ASSIGNMENT 1 - MATH235, FALL 2009

Submit by 16:00, Monday, September 14 (use the designated mailbox in Burnside Hall, 10th floor).

1. Calculate the following intersection and union of sets (provide short explanations, if not complete proofs. For notation, see below).

- (1) Let $N \ge 1$ be a natural number. What is $\bigcup_{n=1}^{N} [-n, n]$? What is $\bigcap_{n=1}^{N} [-n, n]$?
- (2) What is $\bigcup_{n=1}^{\infty} [n, n+1]$? What is $\bigcup_{n=1}^{\infty} (n, n+2)$?
- (3) Let $A_n = \{x^n : x \in \mathbb{N}\}$. What is $\bigcup_{n=1}^{\infty} A_n$? What is $\bigcap_{n=1}^{\infty} A_n$?
- 2. Let A, B and C be sets. Prove or disprove:
 - (1) $(A \setminus B) \setminus C = A \setminus (B \setminus C);$
 - (2) $(B \setminus A) \cup (A \setminus B) = (A \cup B) \setminus (A \cap B).$

(To *disprove* a statement it is enough to give a *single* example where it fails.)

3. Prove that the Principle of Induction (Theorem 2.3.1) implies the statement "every non-empty subset of \mathbb{N} has a minimal element".

4. Prove by induction that

$$1^3 + \dots + n^3 = (1 + \dots + n)^2$$
.

You may use the formula for the right hand side given in the notes.

5. Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$.

- (1) Write 4 different surjective functions from A to B.
- (2) Write 4 different injective functions from B to A.
- (3) How many functions are there from A to B?
- (4) How many surjective functions are there from A to B?
- (5) How many injective functions are there from A to B?
- (6) How many functions are there from B to A?
- (7) How many surjective functions are there from B to A?
- (8) How many injective functions are there from B to A?

Notation: If *a*, *b* are real numbers we use the following notation: $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}.$ $[a, b) = \{x \in \mathbb{R} | a \le x < b\}.$ $(a, b] = \{x \in \mathbb{R} | a < x \le b\}.$ $(a, b) = \{x \in \mathbb{R} | a < x < b\}.$ We also use $[a, \infty) = \{x \in \mathbb{R} | a \le x\}.$ $(-\infty, b] = \{x \in \mathbb{R} | x \le b\}.$ $(-\infty, \infty) = \mathbb{R}.$

If A_1, A_2, A_3, \ldots are sets, we may write $\bigcup_{i=1}^N A_i$ for $A_1 \cup A_2 \cup \cdots \cup A_N$ and $\bigcup_{i=1}^\infty A_i$ for $\bigcup_{i \in \{1,2,3,\ldots\}} A_i$.

2