ASSIGNMENT 2 - MATH235, FALL 2007

Submit by 16:00, Monday, September 24 (use the designated mailbox in Burnside Hall, 10^{th} floor).

1. Consider $\mathbb{N} \times \mathbb{N}$ as a rectangular array:

(0, 0)	(0, 1)	(0, 2)	(0, 3)	
(1, 0)	(1, 1)	(1, 2)	(1, 3)	
(2, 0)	(2, 1)	(2, 2)	(2, 3)	
(3, 0)	(3, 1)	(3, 2)	(3,3)	
:				

Count them using diagonals as follows:

3	6	10	
7	11		
12			
	3 7 12	$ \begin{array}{ccc} 3 & 6 \\ 7 & 11 \\ 12 \end{array} $	3 6 10 7 11 12

This defines a function

$$f:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$$

where f(m, n) is the number appearing in the (m, n) place. (For example, f(0, 0) = 0, f(3, 1) = 13, f(2, 2) = 12.) Provide an explicit formula for f (it is what one calls "a polynomial function in the variables m, n". It may be a good idea to first find a formula for f(0, n)).

2. Prove that if $|A_1| = |A_2|$ and $|B_1| = |B_2|$ then $|A_1 \times B_1| = |A_2 \times B_2|$.

3. Prove that $|\mathbb{N}| = |\mathbb{Q}|$. (Hint: Show two inequalities; note that there is an easy injection $\mathbb{Q} \to \mathbb{Z} \times \mathbb{Z}$).

4. Prove or disprove: if $|A_1| = |A_2|$ and $|B_1| = |B_2|$ then $|A_1 \setminus B_1| = |A_2 \setminus B_2|$.

5. Prove that if a product $z_1 \cdot z_2$ of complex numbers is equal to zero then at least one of z_1, z_2 is zero.

6. Let f be the complex polynomial $f(x) = (3+i)x^2 + (-2-6i)x + 12$. Find a complex number z such that the equation f(x) = z has a unique solution (use the formula for solving a quadratic equation).

7. Find the general form of a complex number z such that: (i) z^2 is a real number (i.e., $\text{Im}(z^2) = 0$). (ii) z^2 is a purely imaginary number (i.e., $\text{Re}(z^2) = 0$). Also, in each of these cases, plot the answer on the complex plane.