Algebra 4 (2003-04) - Assignment 9

Instructor: Dr. Eyal Goren

Submit by Monday, March 22, 12:00.

1) Let p and ℓ be primes (equal or distinct). Let K be the splitting field over \mathbb{Q} of the polynomial

 $x^p - \ell$. Prove that K/\mathbb{Q} is Galois and that

$$\operatorname{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/p\mathbb{Z} \rtimes (\mathbb{Z}/p\mathbb{Z})^{\times}.$$

Guidance: First establish that K/\mathbb{Q} is Galois using a theorem we proved (not the definition). Then

show $[K:\mathbb{Q}]=p(p-1)$ and that $K=\mathbb{Q}(\sqrt[p]{\ell},\zeta_p)$. Examine the possible action of automorphisms of

K on $\sqrt[p]{\ell}, \zeta_p$, and show there are at most p(p-1) possibilities. Conclude that they all occur. Using

again the action on $\sqrt[p]{\ell}$, ζ_p , calculate the commutation rules.

2) Let k be a field. Show that S_n acts as automorphisms of $k(t_1,\ldots,t_n)$, the quotient field of

 $k[t_1,\ldots,t_n]$. Use that to prove that every finite group G is the Galois group of some Galois extension

of fields $K \supset L$.

Hint: what would you do for $G = S_n$?