Quiz 2, Algebra 4, MATH 371 March 23, 2005

Time: 9:00 - 9:30.

1. Find the minimal polynomial of $\sqrt{3} + \sqrt{15}$ over \mathbb{Q} .

Hint: You may find it convenient to use the field $\mathbb{Q}(\sqrt{3},\sqrt{5})$. You may use the fact that this field is Galois over \mathbb{Q} and a description of its Galois group.

2. Let $\omega = e^{2\pi i/3}$, a primitive third root of 1. <u>Sketch</u> the argument that $\mathbb{Q}(\omega, \sqrt[3]{2})/\mathbb{Q}$ is Galois and that

$$\operatorname{Gal}(\mathbb{Q}(\omega, \sqrt[3]{2})/\mathbb{Q}) \cong S_3.$$

For each subgroup of S_3 find the corresponding field under the Galois correspondence. Which fields are Galois over \mathbb{Q} ?

Bonus: Is $\mathbb{Q}(i)$ a subfield of $\mathbb{Q}(\omega, \sqrt[3]{2})$?

Good Luck!!