Midterm Exam – Algebra 4 (MATH 371)

March 3, 2005

Time: 16:00 - 18:00.

Instructions: Answer all quetions in clear handwriting. Use of any material such as books, notebooks, calculators, is not allowed. The maximal possible grade is 110. The difficulty of a question is not necessarily proportional to the number of points it's worth!

1. Let R be an integral domain.

- (1) (5 points) Define the rank of a finitely generated R module.
- (2) (15 points) Let n be a positive integer. Prove that the rank of \mathbb{R}^n is n.
- **2.** (30 points) Let $K \supseteq F$ be an extension of fields. Let

 $H = \{ \alpha \in K : \alpha \text{ is algebraic over } F \}.$

Prove that H is a field and any element of K which is not in H is transcendental over H. (Here you may of course use a certain characterization of algebraic elements we proved in class.)

- 3. Determine the degree of the following splitting fields.
 - (20 points) Prove that the splitting field of $x^4 3$ has degree 8 over \mathbb{Q} .
 - (20 points) Find the degree of the splitting field of $x^4 4$ over \mathbb{Q} .
 - (20 points) Prove that the degree of the splitting field of $x^4 4$ over $\mathbb{Z}/5\mathbb{Z}$ is 2.