Algebra 4 (2004-05) – Assignment 2

Instructor: Dr. Eyal Goren

Submit by Monday, January 24, 24:00 by mail-box on 10th floor.

1) Let R be a commutative ring with 1. An ideal $I \triangleleft R$ is called *nilpotent* if there is a positive integer k such that $I^k = 0$. Recalling the definition of a product of ideals, we see that I is nilpotent with $I^k = 0$ if and only if for any k elements x_1, \ldots, x_k of I we have $x_1x_2 \cdots x_k = 0$. Let R_0 be any commutative ring and J an ideal of R_0 . Let $R = R_0/J^k$ and let I be the ideal which is the image of J under $R_0 \longrightarrow R_0/J^k$. Then I is nilpotent and $I^k = 0$. As a concrete example, the ideal generated by x in $F[x]/(x^k)$ is nilpotent (of degree k).

Let I be a nilpotent ideal of R. Let M, N be R-modules and $f: M \longrightarrow N$ an R-module homomorphism. Prove that there is a well defined induced homomorphism of R-modules $\overline{f}: M/IM \longrightarrow N/IN$. Prove that if \overline{f} is surjective then f is surjective.

2) Let V be a finite dimensional vector space over \mathbb{F} and $T: V \longrightarrow V$ a linear transformation by which we consider V as an $\mathbb{F}[x]$ -module. Prove that V is a cyclic module if and only if the minimal polynomial of T is equal to its characteristic polynomial.

3) Let R be an integral domain and let $f: M \longrightarrow M_1$ be a surjective homomorphism with kernel M_2 . Prove that

$$\operatorname{rank}(M) = \operatorname{rank}(M_1) + \operatorname{rank}(M_2).$$

(You can consult the exercises in Dummit and Foote, pp. 468-469 about how to solve some difficulties that arise in the proof.)