Solutions to Midterm

- 1. (35 points) Let G be a group of order $5 \cdot 7 \cdot 47$.
 - (1) Prove that G has a unique p-Sylow subgroup for each prime p dividing its order.

Proof. For p = 5, 7, 47 let n_p be the number of *p*-Sylow subgroups. Then $n_p \equiv 1 \pmod{p}$ and $n_p | \frac{5 \cdot 7 \cdot 47}{p}$.

For p = 5 the possibilities are $n_5 = 1, 7, 47, 7 \cdot 47$. Since $7 \equiv 2 \pmod{5}$ and $47 \equiv 2 \pmod{5}$ it follows that $7 \cdot 47 \equiv 4 \pmod{5}$ and so only 1 satisfies the condition of being congruent to 1 modulo 5.

For p = 7 the possibilities are $n_7 = 1, 5, 47, 5 \cdot 47$. Since $47 \equiv 5 \pmod{7}$ it follows that $5 \cdot 47 \equiv 25 \equiv 4 \pmod{7}$ and so only 1 satisfies the condition of being congruent to 1 modulo 7. For p = 47 the possibilities are $n_5 = 1, 5, 7, 5 \cdot 7$. Since 5, 7, 35 are smaller than 47 only 1 satisfies the condition of being congruent to 1 modulo 47.

We conclude that $n_5 = n_7 = n_{47} = 1$. So each *p*-Sylow is unique, hence normal.

(2) Prove that G is abelian.

Proof. Let A, B, C be, respectively, the unique 5, 7, 47 Sylow subgroup. We have that A, B, C are all normal in G. It follows that AB is a normal subgroup of G (as we proved in class). Then, $|(AB)C| = |AB| \cdot |C|/|(AB) \cap C| = |A| \cdot |B| \cdot |C|/(|(AB) \cap C| \cdot |A \cap B|)$.

Now, the order of $A \cap B$ divides the order of A and of B and so must be one. Thus, the order of AB is $5 \cdot 7$. The order of $(AB) \cap C$ similarly divides 35 and 47 and so must be one. We conclude that |ABC| = |G| and hence every element in G has the form abc with $a \in A, b \in B, c \in C$. Since A, B, C are of prime order they are cyclic and so abelian. It is therefore enough to prove that the elements of A commute with the elements of B and of C, and that the elements of B commute with the elements of C. This follows from the following statement.

Let G be a finite group and P, Q two normal Sylow subgroups belonging to different primes. Then the elements of P and Q commute. Indeed, $P \cap Q$ must be the trivial group, by the same arguments as above. On the other hand, if $x \in P, y \in Q$ then $(xyx^{-1})y^{-1} = x(yx^{-1}y^{-1}) \in P \cap Q$ because P, Q are normal. It follows that [x, y] = 1 and so x and y commute.

2. (30 points) Let \mathbb{F}_p be the field of p elements. Let the group S_3 act on \mathbb{F}_p^3 by

$$\sigma(x_1, x_2, x_3) = (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, x_{\sigma^{-1}(3)})$$

(it is the action taking the standard basis vector e_i to $e_{\sigma(i)}$). Let V the subspace of \mathbb{F}_p^3 consisting of vectors (x_1, x_2, x_3) such that $x_1 + x_2 + x_3 = 0$. Then S_3 acts on V by the same formula.

Calculate the number of orbits of S_3 in V. (Remark: the case p = 3 may require special attention.)

Solution. By the Cauchy-Frobenius formula we have

$$N = \frac{1}{6} \sum_{\substack{\sigma \in S_3 \\ 1}} I(\sigma),$$

where N is the number of orbits, $I(\sigma)$ is the number of elements in V that σ fixes and where we have used $6 = |S_3|$.

Let $\sigma = 1$. Then σ fixes every element of V. Since for any choice of $x_1, x_2 \in \mathbb{F}_p$ there is a unique x_3 such that $(x_1, x_2, x_3) \in V$, the number of elements of V is p^2 and so $I(1) = p^2$.

Let $\sigma = (12)$. Then σ fixes (x_1, x_2, x_3) if and only if $x_1 = x_2$. The number of vectors of the form (x, x, y) that are in V is p (choose any x and let y = -2x). Thus, I((12)) = p. In the same way, for any transposition σ we have $I(\sigma) = p$.

Let $\sigma = (123)$ or (132). Then σ fixes (x_1, x_2, x_3) if and only if $x_1 = x_2 = x_3$. If (x, x, x) is in V then 3x = 0. This implies for $p \neq 3$ that x = 0 and so σ fixes only the vector (0, 0, 0); for p = 3 any x is possible and so σ fixes 3 vectors (choose x = 0, 1, 2).

Put together we get that

$$N = \frac{1}{6}(p^2 + 3 \times p + 2 \times 1) = \frac{(p+1)(p+2)}{6}, \qquad p \neq 3,$$

and

$$N = \frac{1}{6}(p^2 + 3 \times p + 2 \times 3) = \frac{24}{6} = 4, \qquad p = 3.$$

- 3. (35 points) Let G be a group of order p^n , where p is a prime and n is a positive integer.
 - (1) Prove that the center Z(G) of G is not trivial.

Proof. Repeat the proof given in class. One did not need to prove the class equation. \Box

(2) If n = 3 (so G is a group of order p³), what are the possibilities for the order of Z(G)? Solution. We proved that G/Z(G) cannot be a non-trivial cyclic group. If the order of Z(G) = p² then G/Z(G) is of order p, hence cyclic and we get a contradiction. Using the first part of the question we get that |Z(G)| = p, p³. The last case happens if and only if G = Z(G), namely, if and only if G is abelian. Since we proved in class and assignments that there are always abelian and non-abelian groups of order p³, indeed both possibilities occur.