
Solutions to Midterm

1. (35 points) Let G be a group of order 5 · 7 · 47.

(1) Prove that G has a unique p-Sylow subgroup for each prime p dividing its order.

Proof. For p = 5, 7, 47 let np be the number of p-Sylow subgroups. Then np ≡ 1 (mod p) and
np| 5·7·47p .

For p = 5 the possibilities are n5 = 1, 7, 47, 7 ·47. Since 7 ≡ 2 (mod 5) and 47 ≡ 2 (mod 5)
it follows that 7 · 47 ≡ 4 (mod 5) and so only 1 satisfies the condition of being congruent to
1 modulo 5.

For p = 7 the possibilities are n7 = 1, 5, 47, 5 · 47. Since 47 ≡ 5 (mod 7) it follows that
5 ·47 ≡ 25 ≡ 4 (mod 7) and so only 1 satisfies the condition of being congruent to 1 modulo 7.

For p = 47 the possibilities are n5 = 1, 5, 7, 5 · 7. Since 5, 7, 35 are smaller than 47 only 1
satisfies the condition of being congruent to 1 modulo 47.

We conclude that n5 = n7 = n47 = 1. So each p-Sylow is unique, hence normal. ¤

(2) Prove that G is abelian.

Proof. Let A,B, C be, respectively, the unique 5, 7, 47 Sylow subgroup. We have that A, B,C

are all normal in G. It follows that AB is a normal subgroup of G (as we proved in class).
Then, |(AB)C| = |AB| · |C|/|(AB) ∩ C| = |A| · |B| · |C|/(|(AB) ∩ C| · |A ∩B|).

Now, the order of A ∩ B divides the order of A and of B and so must be one. Thus, the
order of AB is 5 · 7. The order of (AB) ∩ C similarly divides 35 and 47 and so must be
one. We conclude that |ABC| = |G| and hence every element in G has the form abc with
a ∈ A, b ∈ B, c ∈ C. Since A,B, C are of prime order they are cyclic and so abelian. It is
therefore enough to prove that the elements of A commute with the elements of B and of C,
and that the elements of B commute with the elements of C. This follows from the following
statement.

Let G be a finite group and P, Q two normal Sylow subgroups belonging to different primes.
Then the elements of P and Q commute. Indeed, P ∩Q must be the trivial group, by the same
arguments as above. On the other hand, if x ∈ P, y ∈ Q then (xyx−1)y−1 = x(yx−1y−1) ∈
P ∩Q because P, Q are normal. It follows that [x, y] = 1 and so x and y commute.

¤

2. (30 points) Let Fp be the field of p elements. Let the group S3 act on F3
p by

σ(x1, x2, x3) = (xσ−1(1), xσ−1(2), xσ−1(3))

(it is the action taking the standard basis vector ei to eσ(i)). Let V the subspace of F3
p consisting of

vectors (x1, x2, x3) such that x1 + x2 + x3 = 0. Then S3 acts on V by the same formula.
Calculate the number of orbits of S3 in V . (Remark: the case p = 3 may require special attention.)

Solution. By the Cauchy-Frobenius formula we have

N =
1
6

∑

σ∈S3

I(σ),

1



2

where N is the number of orbits, I(σ) is the number of elements in V that σ fixes and where we have
used 6 = |S3|.

Let σ = 1. Then σ fixes every element of V . Since for any choice of x1, x2 ∈ Fp there is a unique
x3 such that (x1, x2, x3) ∈ V , the number of elements of V is p2 and so I(1) = p2.

Let σ = (12). Then σ fixes (x1, x2, x3) if and only if x1 = x2. The number of vectors of the form
(x, x, y) that are in V is p (choose any x and let y = −2x). Thus, I((12)) = p. In the same way, for
any transposition σ we have I(σ) = p.

Let σ = (123) or (132). Then σ fixes (x1, x2, x3) if and only if x1 = x2 = x3. If (x, x, x) is in V

then 3x = 0. This implies for p 6= 3 that x = 0 and so σ fixes only the vector (0, 0, 0); for p = 3 any
x is possible and so σ fixes 3 vectors (choose x = 0, 1, 2).

Put together we get that

N =
1
6
(p2 + 3× p + 2× 1) =

(p + 1)(p + 2)
6

, p 6= 3,

and
N =

1
6
(p2 + 3× p + 2× 3) =

24
6

= 4, p = 3.

3. (35 points) Let G be a group of order pn, where p is a prime and n is a positive integer.
(1) Prove that the center Z(G) of G is not trivial.

Proof. Repeat the proof given in class. One did not need to prove the class equation. ¤

(2) If n = 3 (so G is a group of order p3), what are the possibilities for the order of Z(G)?
Solution. We proved that G/Z(G) cannot be a non-trivial cyclic group. If the order of
Z(G) = p2 then G/Z(G) is of order p, hence cyclic and we get a contradiction. Using the
first part of the question we get that |Z(G)| = p, p3. The last case happens if and only if
G = Z(G), namely, if and only if G is abelian. Since we proved in class and assignments that
there are always abelian and non-abelian groups of order p3, indeed both possibilities occur.


