Algebra 3 (2003-04) – Assignment 9

Instructor: Dr. Eyal Goren

Submit by Monday, November 17, 12:00 by mail-box on 10th floor.

1.

- (1) Let R, S be two rings. Show that $R \times S$ (also denoted $R \oplus S$) is a ring under the operations $(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2), \qquad (r_1, s_1)(r_2, s_2) = (r_1 r_2, s_1 s_2).$
- (2) Find the ideals of $\mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}$.

2. Let R be a commutative ring.

- (1) Find the units of R[x], R[[x]], R((x)).
- (2) Assume that R is a field. Prove that R((x)) is isomorphic to Quot(R[[x]]).
- (3) Prove that $\operatorname{Quot}(\mathbb{Z}[[x]])$ is properly contained in $\mathbb{Q}((x))$.
- **3.** Let R be a ring. An element $x \in R$ is called nilpotent if $x^m = 0$ for some positive integer m.¹
 - (1) Find the nilpotent elements of $\mathbb{Z}/n\mathbb{Z}$ in terms of the prime factorization of n.
 - (2) Prove that if x is nilpotent then 1 + x is a unit.
 - (3) Assume that R is commutative. Prove that the set of nilpotent elements is an ideal of R. It is called the nil-radical of R and is denoted by nil(R), or $\sqrt{(0)}$.
 - (4) Prove that $\operatorname{nil}(R/\operatorname{nil}(R)) = \{0\}.$

Bonus. Find a ring R with elements $x, y \in R$ such that xy = 1 but $yx \neq 1$.

¹Note that if \mathbb{F} is a field, $R = M_n(\mathbb{F})$ then the nilpotent elements of R are the nilpotent matrices, which can be also characterized as the matrices with characteristic polynomial t^n .