Algebra 3 (2003-04) - Assignment 7

Instructor: Dr. Eyal Goren

Submit by Monday, October 27, 12:00 by mail-box on 10th floor.

For full marks do questions 2, 4 and one of questions 1, 3. Solving all questions is highly recommended.

1)

- (1) Given a positive integer N prove that there are finitely many groups of order N up to isomorphism.
- (2) Given a positive integer N prove that there are finitely many finite groups with N conjugacy classes. You may use the following fact (which is not difficult to prove!): Given n > 0 and a rational number q there are only finitely many n-tuples (c_1, \ldots, c_n) of natural numbers such that $q = \frac{1}{c_1} + \cdots + \frac{1}{c_n}$.
- (3) Find the groups in the preceding question for N = 1, 2, 3. (Prove your answer; you may use the classification of groups of small order we gave in the past.)

2)

- (1) Let G be a group, then G/Z(G) is not a non-trivial cyclic group. (Rephrased: If G/Z(G) is cyclic then it is the trivial group of one element.)
- (2) Let p be a prime. Prove that a group of order p^2 is abelian.
- 3) Prove the following facts concerning free groups:¹
 - (1) given a group G, and d elements $s_1, \ldots s_d$ in G, there is a unique group homomorphism $f: \mathcal{F}(d) \longrightarrow G$ such that $f(x_i) = s_i$;
 - (2) if G is a group generated by d elements there is a surjective group homomorphism $\mathscr{F}(d) \longrightarrow G$;
 - (3) if $w_1, \ldots w_r$ are words in $\mathscr{F}(d)$, let N be the minimal normal subgroup containing all the w_i (prove such an N exists!). The group $\mathscr{F}(d)/N$ is also denoted by $\langle x_1, \ldots, x_d | w_1, \ldots, w_r \rangle$ and is said to be given by the generators x_1, \ldots, x_d and relations w_1, \ldots, w_r .
 - (4) Prove that $\mathbb{Z}/n\mathbb{Z} \cong \langle x_1|x_1^n \rangle$, $\mathbb{Z}^2 \cong \langle x_1, x_2|x_1x_2x_1^{-1}x_2^{-1} \rangle$.
 - (5) if d=1 then $\mathscr{F}(d)\cong\mathbb{Z}$ but if d>1 then $\mathscr{F}(d)$ is a non-commutative infinite group.

4)

- (1) Let p be a prime. Find all p-Sylow subgroups of S_p . How many are there?
- (2) Find for every prime p how many p-Sylow subgroups S_5 has; write explicitly one p-Sylow subgroup for each prime.

1

¹We let $\mathscr{F}(d)$ be the free group on the generators x_1, \ldots, x_d . The first three claims were proven in class and there is no need to repeat the proof.