Algebra 3 (2003-04) - Assignment 6

Instructor: Dr. Eyal Goren

Submit by Monday, October 20, 12:00 by mail-box on $10^{\rm th}$ floor.

1) Write the conjugacy classes of S_4 . For each conjugacy class choose a representative x and calculate its centralizer $C_{S_4}(x)$. Verify the class equation.

Do the same for A_4 . Use the results to find the normal subgroups of A_4 and, in particular, deduce that A_4 does not contain a subgroup of order 6.

- 2) There is an obvious embedding of S_3 in S_6 , the one in which S_3 acts on $\{1,2,3\} \subset \{1,2,3,4,5,6\}$. This embedding is not transitive, that is, given $1 \le i \le j \le 6$ we cannot always find an element of S_3 that takes i to j. Prove that there is a transitive embedding $S_3 \longrightarrow S_6$ (i.e., such that the image acts transitively on the 6 elements). Given such embedding, write the image of (12) and (123).
- 3) Prove that A_n is generated by 3 cycles for $n \geq 3$.
- 4) Is there an injective homomorphism $S_n \longrightarrow A_{n+1}$?
- 5) Let $\sigma \in S_n$. Prove that there is no odd permutation commuting with σ if and only if $p(\sigma)$ consists of distinct odd integers. (For example: (123) in S_3 satisfies this (because p((123)) = 3), but (123) does not satisfies that in S_5 (because p((123)) = 1 + 1 + 3).)
- 6) Write the conjugacy classes of A_6 . Devise a direct proof that A_6 is simple.