Algebra 3 (2003-04) – Assignment 11

Instructor: Dr. Eyal Goren

Submit by Monday, December 1, 12:00 by mail-box on 10th floor.

We use the notation \mathbb{F}_q to denote a finite field with q elements. If q is a prime then $\mathbb{F}_q \cong \mathbb{Z}/q\mathbb{Z}$.

- 1. Prove that $\mathbb{F}_3[x]/(x^2+1)$ is a field with 9 elements. Find the inverse of x+2 in this field (for that use the Euclidean algorithm to find the g.c.d. of x+2 and x^2+1). Prove that $\mathbb{F}_5[x]/(x^2+1)$ is not a field.
- **2.** Give an example of an integral domain R and two elements $x, y \in R$ such that there is a g.c.d. for x and y but the ideal (x, y) is not principal.
- **3.** Show that the ideal (-1+3i, 1+5i) in $\mathbb{Z}[i]$ is principal and find a generator for it.
- **4.** Making use of the identity $(1+\sqrt{-5})(1-\sqrt{-5})=2\cdot 3$, prove that the ring $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.
- **5.** For a UFD R define the least common multiple l.c.m.(x,y) of any two elements $x,y \in R$. Prove it is well defined and satisfies properties analogous (but "opposite") to those of the greatest common divisor. Find a formula for l.c.m.(x,y) in terms of the prime factorization of x and y.