Algebra 3 (2003-04) – Assignment 1

Instructor: Dr. Eyal Goren

Submit by Monday, September 15, 12:00 by mail-box on 10th floor.

- 1) Let G be a finite group such that for every $g \in G$ we have $g^2 = e$.
 - (1) Prove that G is an abelian group.
 - (2) Prove that G has 2^n elements.
- 2) Let G be a finite group of even order. Prove that G has an element of order 2. (Hint: consider the association $g \mapsto g^{-1}$).
- 3) Let p be a prime number. Prove that $(p-1)! \equiv -1 \pmod{p}$. (Hint: for a finite abelian group G consider the product $\Pi_{q \in G} g$).
- 4) Write down all the elements of $GL_2(\mathbb{F}_2)$. Consider the action of this group on the set of non-zero vectors in \mathbb{F}_2^2 (the two dimensional vector space over \mathbb{F}_2). Show that this allows one to identify the group $GL_2(\mathbb{F}_2)$ with the symmetric group S_3 .
- **5)** Consider the upper triangular 3×3 invertible matrices with entries in \mathbb{F}_2 . How many elements does this group have? Is it abelian? Find the order of each of its elements.

Bonus: identify this group with a more familiar group of order 8.