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Part 1. Basic Concepts and Key Examples

Groups are among the most rudimentary forms of algebraic structures. Because of their simplicity, in
terms of their definition, their complexity is large. For example, vector spaces, which have very complex
definition, are easy to classify; once the field and dimension are known, the vector space is unique up to
isomorphism. In contrast, it is difficult to list all groups of a given order, or even obtain an asymptotic
formula for that number.

In the study of vector spaces the objects are well understood and so one focuses on the study of maps
between them. One studies canonical forms (e.g., the Jordan canonical form), diagonalization, and other
special properties of linear transformations (normal, unitary, nilpotent, etc.). In contrast, at least in the
theory of finite groups on which this course focuses, there is no comparable theory of maps. A theory exist
mostly for maps into matrix groups (such maps are called linear representation and will not be studied in
this course).

While we shall define such maps (called homomorphisms) between groups in general, there will be a
large set of so called simple groups1 for which there are essentially no such maps: the image of a simple
group under a homomorphism is for all practical purposes just the group itself. The set of atoms is large,
infinite in fact. The classification of all simple groups was completed in the second half of the 20-th century
and has required thousands of pages of difficult math.

Thus, our focus - apart from the three isomorphism theorems - will be on the structure of the objects
themselves. We will occupy ourselves with understanding the structure of subgroups of a finite group,
with groups acting as symmetries of a given set and with special classes of groups (cyclic, simple, abelian,
solvable, etc.).

1. First definitions

1.1. Group. A group G is a non-empty set with a function

m : G×G −→ G,

where we usually abbreviate m(g, h) to g ? h or simply gh, such that the following hold:
(1) (Associativity) f(gh) = (fg)h for all f, g, h ∈ G. 2

(2) (Identity) There is an element e ∈ G such that for all g ∈ G we have eg = ge = g.
(3) (Inverse) For every g ∈ G there is an element h ∈ G such that gh = hg = e.

It follows quite easily from associativity that given any n elements g1, . . . , gn of G we can put parentheses
as we like in g1 ? · · · ? gn without changing the final outcome. For that reason we allow ourselves to write
simply g1 · · · gn (though the actual computation of such product is done by successively multiplying two
elements, e.g. (((g1g2)(g3g4))g5) is a way to compute g1g2g3g4g5.)

The identity element is unique: if e′ has the same property then e′ = ee′ = e. Sometimes we will denote
the identity element by 1 (or by 0 is the group is commutative - see below). The element h provided
in axiom (3) is unique as well: if h′ has the same property then hg = e = h′g and so hgh = h′gh,
thus h = he = hgh = h′gh = h′e = h′. We may therefore denote this h unambiguously by g−1. Note
that if h is the inverse of g then g is the inverse of h and so (g−1)−1 = g. Another useful identity is
(fg)−1 = g−1f−1. It is verified just by checking that g−1f−1 indeed functions as (fg)−1 and it does:
(g−1f−1)(fg) = g−1(f−1f)g = g−1eg = g−1g = e.

We define by induction gn = gn−1g for n > 0 and gn = (g−n)−1 for n < 0. Also g0 = e, by definition.
One proves that gn+m = gngm for any n,m ∈ Z.

1A more appropriate name might be “atomic groups”, but the terminology is too deeply rooted to deviate from it.
2In fuller notation m(f, m(g, h)) = m(m(f, g), h).
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A group is called of finite order if it has finitely many elements. It is called abelian if it is commutative:
gh = hg for all g, h ∈ G.

1.2. Subgroup and order. A subgroup H of a group G is a non-empty subset of G such that (i) e ∈ H,
(ii) if g, h ∈ H then gh ∈ H, and (iii) if g ∈ H then also g−1 ∈ H. One readily checks that in fact H is
a group. One checks that {e} and G are always subgroups, called the trivial subgroups. We will use the
notation

H < G

to indicate that H is a subgroup of G.
One calls a subgroup H cyclic if there is an element h ∈ H such that H = {hn : n ∈ Z}. Note that

{hn : n ∈ Z} is always a cyclic subgroup. We denote it by 〈h〉. The order of an element h ∈ G, o(h), is
defined to be the minimal positive integer n such that hn = e. If no such n exists, we say h has infinite
order.

Lemma 1.2.1. For every h ∈ G we have o(h) = ]〈h〉.
Proof. Assume first that o(h) is finite. Since for every n we have hn+o(h) = hnho(h) = hn we see that
〈h〉 = {e, h, h2, . . . , ho(h)−1}. Thus, also ]〈h〉 is finite and at most o(h).

Suppose conversely that ]〈h〉 is finite, say of order n. Then the elements {e = h0, h, . . . , hn} cannot be
distinct and thus for some 0 ≤ i < j ≤ n we have hi = hj . Therefore, hj−i = e and we conclude that o(h)
is finite and o(h) is at most ]〈h〉. This concludes the proof. ¤

Corollary 1.2.2. If h has a finite order n then 〈h〉 = {e, h, . . . , hn−1} and consists of precisely n elements
(that is, there are no repetitions in this list.)

It is ease to check that if {Hα : α ∈ J} is a non-empty set of subgroups of G then ∩α∈JHα is a subgroup
as well. Let {gα : α ∈ I} be a set consisting of elements of G (here I is some index set). We denote by
〈{gα : α ∈ I}〉 the minimal subgroup of G containing {gα : α ∈ I}. It is clearly the intersection of all
subgroups of G containing {gα : α ∈ I}.
Lemma 1.2.3. The subgroup 〈{gα : α ∈ I}〉 is the set of all finite expressions h1 · · ·ht where each hi is
some gα or g−1

α .

Proof. Clearly 〈{gα : α ∈ I}〉 contains each gα hence all the expressions h1 · · ·ht where each hi is some gα

or g−1
α . Thus, it is enough to show that the set of all finite expressions h1 · · ·ht, where each hi is some gα

or g−1
α , is a subgroup. Clearly e (equal to the empty product, or to gαg−1

α if you prefer) is in it. Also, from
the definition it is clear that it is closed under multiplication. Finally, since (h1 · · ·ht)−1 = h−1

t · · ·h−1
1 it

is also closed under taking inverses. ¤

We call 〈{gα : α ∈ I}〉 the subgroup of G generated by {gα : α ∈ I}; if it is equal to G, we say that
{gα : α ∈ I} are generators for G.

2. Main examples

2.1. Z, Z/nZ and (Z/nZ)×. The set of integers Z = {. . . ,−2,−1, 0, 1, 2, 3, . . . }, with the addition oper-
ation, is an infinite abelian group. It is cyclic; both 1 and −1 are generators.

The group Z/nZ of integers modulo n, {0, 1, 2, . . . , n − 1}, with addition modulo n, is a finite abelian
group. The group Z/nZ is a cyclic group with generator 1. In fact (see the section on cyclic groups), an
element x generates Z/nZ if and only if (x, n) = 1.

Consider (Z/nZ)× = {a ∈ Z/nZ : (a, n) = 1} with multiplication. It is a group whose order is denoted
by φ(n) (the function n 7→ φ(n) is call Euler’s phi function). To see it is a group, note that multiplication
is associative and if (a, n) = 1, (b, n) = 1 then also (ab, n) = 1 (thus, we do indeed get an operation on
Z/nZ×). The congruence class 1 is the identity and the existence of inverse follows from finiteness: given
a ∈ Z/nZ× consider the function x 7→ ax. It is injective: if ax = ay then a(x − y) = 0 (mod n), that
is (using the same letters to denote integers in these congruence classes) n|a(x − y). Since (a, n) = 1 we
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conclude that n|(x− y) that is, x = y in Z/nZ. It follows that x 7→ ax is also surjective and thus there is
an element x such that ax = 1.

2.2. The dihedral group D2n. Let n ≥ 3. Consider the linear transformations of the plane that take a
regular polygon with n sides, symmetric about zero, unto itself. One easily sees that every such symmetry
is determine by its action of the vertices 1, 2 (thought of as vectors, they form a basis) and that it takes
these vertices to the vertices i, i + 1 or i + 1, i, where 1 ≤ i ≤ n (and the labels of the vertices are
read modulo n). One concludes that every such symmetry is of the form yaxb for suitable and unique
a ∈ {0, 1}, b ∈ {1, . . . , n}, where y is the reflection fixing 1 (so takes n, 2 to 2, n) and x is the rotation
taking 1, 2 to 2, 3. One finds that y2 = e = xn and that yxy = x−1. All other relations are consequences
of these.

n 1

2

x

3

y

Figure 2.1. Symmetries of a regular Polygon with n vertices.

The Dihedral group is thus a group of order 2n generated by a reflection y and a rotation x satisfying
y2 = xn = xyxy = e. This makes sense also for n = 1, 2.

2.3. The symmetric group Sn. Consider the set Sn consisting of all injective (hence bijective) functions,
called permutations,

σ : {1, 2, . . . , n} −→ {1, 2, . . . , n}.
We define

m(σ, τ) = σ ◦ τ.

This makes Sn into a group, whose identity e is the identity function e(i) = i, ∀i.
We may describe the elements of Sn in the form of a table:(

1 2 . . . n
i1 i2 . . . in

)
.

This defines a permutation σ by the rule σ(a) = ia.
Another device is to use the notation (i1i2 . . . is), where the ij are distinct elements of {1, 2, . . . , n}.

This defines a permutation σ according to the following convention: σ(ia) = ia+1 for 1 ≤ a < s, σ(is) = i1,
and for any other element x of {1, 2, . . . , n} we let σ(x) = x. Such a permutation is called a cycle. One
can easily prove the following facts:

(1) Disjoint cycles commute.
(2) Every permutation is a product of disjoint cycles (uniquely up to permuting the cycles and omitting

cycles of length one).
(3) The order of (i1i2 . . . is) is s.
(4) If σ1, . . . , σt are disjoint cycles of orders r1, . . . , rt then the order of σ1 ◦· · ·◦σt is the least common

multiple of r1, . . . , rt.
(5) The symmetric group has order n!.
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Example 2.3.1. The order of the permutation (1 2 3 4) is 4. Indeed, it is not trivial and (1 2 3 4)2 =
(1 3)(2 4), (1 2 3 4)3 = (4 3 2 1), (1 2 3 4)4 = 1.

The permutation ( 1 2 3 4 5 6
6 1 3 5 4 2 ) is equal to the product of cycles (1 6 2)(4 5). It is of order 6.

2.3.1. The sign of a permutation, and realizing permutations as linear transformations.

Lemma 2.3.2. Let n ≥ 2. Let Sn be the group of permutations of {1, 2, . . . , n}. There exists a surjective
homomorphism3 of groups

sgn : Sn −→ {±1}
(called the ‘sign’). It has the property that for every i 6= j,

sgn( (ij) ) = −1.

Proof. Consider the polynomial in n-variables4

p(x1, . . . , xn) =
∏

i<j

(xi − xj).

Given a permutation σ we may define a new polynomial∏

i<j

(xσ(i) − xσ(j)).

Note that σ(i) 6= σ(j) and for any pair k < ` we obtain in the new product either (xk − x`) or (x` − xk).
Thus, for a suitable choice of sign sgn(σ) ∈ {±1}, we have5

∏

i<j

(xσ(i) − xσ(j)) = sgn(σ)
∏

i<j

(xi − xj).

We obtain a function
sgn : Sn −→ {±1}.

This function satisfies sgn( (k`) ) = −1 (for k < `): Let σ = (k`) and consider the product
∏

i<j

(xσ(i) − xσ(j)) = (x` − xk)
∏

i<j
i 6=k,j 6=`

(xi − xj)
∏

k<j
j 6=`

(x` − xj)
∏

i<`
i 6=k

(xi − xk).

(This corresponds to the cases (i) i = k, j = `; (ii) i = k, j 6= `(⇒ j > k); (iii) i 6= k, j = `(⇒ i < `); (iv)
i 6= k, j 6= `.) Counting the number of signs that change we find that

∏

i<j

(xσ(i) − xσ(j)) = (−1)(−1)]{j:k<j<`}(−1)]{i:k<i<`}∏

i<j

(xi − xj) = −
∏

i<j

(xi − xj).

It remains to show that sgn is a group homomorphism. We first make the innocuous observation that for
any variables y1, . . . , yn and for any permutation σ we have∏

i<j

(yσ(i) − yσ(j)) = sgn(σ)
∏

i<j

(yi − yj).

Let τ be a permutation. We apply this observation for the variables yi := xτ(i). We get

sgn(τσ)p(x1, . . . , xn) = p(xτσ(1), . . . , xτσ(n))

= p(yσ(1), . . . , yσ(n))

= sgn(σ)p(y1, . . . , yn)

= sgn(σ)p(xτ(1), . . . , xτ(n))

= sgn(σ)sgn(τ)p(x1, . . . , xn).

This gives
sgn(τσ) = sgn(τ)sgn(σ).

3That means sgn(στ) = sgn(σ)sgn(τ)
4For n = 2 we get x1 − x2. For n = 3 we get (x1 − x2)(x1 − x3)(x2 − x3).
5For example, if n = 3 and σ is the cycle (123) we have

(xσ(1) − xσ(2))(xσ(1) − xσ(3))(xσ(2) − xσ(3)) = (x2 − x3)(x2 − x1)(x3 − x1) = (x1 − x2)(x1 − x3)(x2 − x3).

Hence, sgn( (1 2 3) ) = 1.
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¤

Calculating sgn in practice. Recall that every permutation σ can be written as a product of disjoint
cycles

σ = (a1 . . . a`)(b1 . . . bm) . . . (f1 . . . fn).

Claim: sgn(a1 . . . a`) = (−1)`−1.
Corollary : sgn(σ) = (−1)] even length cycles.

Proof. We write

(a1 . . . a`) = (a1a`) . . . (a1a3)(a1a2)︸ ︷︷ ︸
`−1 transpositions

.

Since a transposition has sign −1 and sgn is a homomorphism, the claim follows. ¤

A Numerical example. Let n = 11 and

σ =
(

1 2 3 4 5 6 7 8 9 10
2 5 4 3 1 7 8 10 6 9

)
.

Then

σ = (1 2 5)(3 4)(6 7 8 10 9).

Now,

sgn( (1 2 5) ) = 1, sgn( (3 4) ) = −1, sgn( (6 7 8 10 9) ) = 1.

We conclude that sgn(σ) = −1.

Realizing Sn as linear transformations. Let F be any field. Let σ ∈ Sn. There is a unique linear
transformation

Tσ : Fn −→ Fn,

such that

T (ei) = eσ(i), i = 1, . . . n,

where, as usual, e1, . . . , en are the standard basis of Fn. Note that

Tσ




x1

x2

...
xn


 =




xσ−1(1)

xσ−1(2)

...
xσ−1(n)


 .

(For example, because Tσx1e1 = x1eσ(1), the σ(1) coordinate is x1, namely, in the σ(1) place we have the
entry xσ−1(σ(1)).) Since for every i we have TσTτ (ei) = Tσeτ(i) = eστ(i) = Tστei, we have the relation

TσTτ = Tστ .

The matrix representing Tσ is the matrix (aij) with aij = 0 unless i = σ(j). For example, for n = 4 the
matrices representing the permutations (12)(34) and (1 2 3 4) are, respectively




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 ,




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 .
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Otherwise said,6

Tσ =
(
eσ(1) | eσ(2) | . . . | eσ(n)

)
=




eσ−1(1)

——–
eσ−1(2)

——–
...

——–
eσ−1(n)




.

It follows that
sgn(σ) det(Tσ) = sgn(σ) det

(
eσ(1) | eσ(2) | . . . | eσ(n)

)

= det
(
e1 | e2 | . . . | en

)

= det(In)
= 1.

Recall that sgn(σ) ∈ {±1}. We get
det(Tσ) = sgn(σ).

2.3.2. Transpositions and generators for Sn. Let 1 ≤ i < j ≤ n and let σ = (ij). Then σ is called a
transposition. Let T be the set of all transpositions (T has n(n − 1)/2 elements). Then T generates Sn.
In fact, also the transpositions (12), (23), . . . , (n− 1 n) alone generate Sn.

2.3.3. The alternating group An. Consider the set An of all permutations in Sn whose sign is 1. They
are called the even permutations (those with sign −1 are called odd). We see that e ∈ An and that if
σ, τ ∈ An also στ and σ−1. This follows from sgn(στ) = sgn(σ)sgn(τ), sgn(σ−1) = sgn(σ)−1.

Thus, An is a group. It is called the alternating group. It has n!/2 elements (use multiplication by (12)
to create a bijection between the odd and even permutations). Here are some examples

n An

2 {1}
3 {1, (123), (132)}
4 {1, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)}

2.3.4. A useful formula for conjugation. Let σ, τ ∈ Sn. There is a nice formula for τστ−1 (this is called
conjugating σ by τ). If σ is written as a product of cycles then the permutation τστ−1 is obtained by
applying τ to the numbers appearing in the cycles of σ. That is, if σ takes i to j then τστ−1 takes τ(i)
to τ(j). Indeed,

τστ−1(τ(i)) = τ(σ(i)) = τ(j).
Here is an example: say σ = (1 4)(2 5)(3 7 6) and τ = (1 2 3 4)(6 7) then τστ−1 = (τ(1) τ(4)) (τ(2) τ(5)) (τ(3) τ(7) τ(6)) =
(2 1)(3 5)(4 6 7).

2.4. Matrix groups and the quaternions. Let R be a commutative ring with 1. We let GLn(R) denote
the n× n matrices with entries with R, whose determinant is a unit in R.

Proposition 2.4.1. GLn(R) is a group under matrix multiplication.

Proof. Multiplication of matrices is associative and the identity matrix is in GLn(R). If A,B ∈ GLn(R)
then det(AB) = det(A) det(B) gives that det(AB) is a unit of R and so AB ∈ GLn(R). The adjoint matrix
satisfies Adj(A)A = det(A)In and so every matrix A in GLn(R) has an inverse equal to det(A)−1Adj(A).
Note that A−1A = Id implies that det(A−1) = det(A)−1, hence an invertible element of R. Thus A−1 is
in GLn(R). ¤

6This gives the interesting relation Tσ−1 = T t
σ . Because σ 7→ Tσ is a group homomorphism we may conclude that

T−1
σ = T t

σ . Of course for a general matrix this doesn’t hold.
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Proposition 2.4.2. If R is a finite field of q elements then GLn(R) is a finite group of cardinality
(qn − 1)(qn − q) · · · (qn − qn−1).

Proof. To give a matrix in GLn(R) is to give a basis of Rn (consisting of the columns of the matrix). The
first vector v1 in a basis can be chosen to be any non-zero vector and there are qn − 1 such vectors. The
second vector v2 can be chosen to be any vector not in Span(v1); there are qn − q such vectors. The third
vector v3 can be chosen to be any vector not in Span(v1, v2); there are qn−q2 such vectors. And so on. ¤

Exercise 2.4.3. Prove that the set of upper triangular matrices in GLn(F), where F is any field, forms a
subgroup of GLn(F ). It is also called a Borel subgroup.

Prove that the set of upper triangular matrices in GLn(F) with 1 on the diagonal, where F is any field,
forms a subgroup of GLn(F ). It is also called a unipotent subgroup.

Calculate the cardinality of these groups when F is a finite field of q elements.

Consider the case R = C, the complex numbers, and the set of eight matrices
{
±

(
1 0
0 1

)
,±

(
i 0
0 −i

)
,±

(
0 1
−1 0

)
,±

(
0 i
i 0

)}
.

One verifies that this is a subgroup of GL2(C), called the Quaternion group. One can use the notation

±1,±i,±j,±k

for the matrices, respectively. Then we have

i2 = j2 = k2 = −1, ij = −ji = k, jk = i, ki = j.

2.5. Groups of small order. One can show that in a suitable sense (up to isomorphism, see § 8.1) the
following is a complete list of groups for the given orders. (In the middle column we give the abelian
groups and in the right column the non-abelian groups).

order abelian groups non-abelian groups

1 {1}
2 Z/2Z
3 Z/3Z
4 Z/2Z× Z/2Z, Z/4Z
5 Z/5Z
6 Z/6Z S3

7 Z/7Z
8 Z/2Z× Z/2Z× Z/2Z, Z/2Z× Z/4Z, Z/8Z D8, Q

9 Z/3Z× Z/3Z, Z/9Z
10 Z/10Z D10

11 Z/11Z
12 Z/2Z× Z/6Z, Z/12Z D12, A4, T

In the following table we list for every n the number G(n) of subgroups of order n (this is taken from
J. Rotman/An introduction to the theory of groups):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

G(n) 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1

n 20 21 22 23 24 25 26 27 28 29 30 31 32

G(n) 5 2 2 1 15 2 2 5 4 1 4 1 51
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2.6. Direct product. Let G,H be two groups. Define on the cartesian product G×H multiplication by

m : (G×H)× (G×H) −→ G×H, m((a, x), (b, y)) = (ab, xy).

This makes G×H into a group, called the direct product (also direct sum) of G and H.
One checks that G×H is abelian if and only if both G and H are abelian. The following relation among

orders hold: o(a, x) = lcm(o(a), o(x)). It follows that if G,H are cyclic groups whose orders are co-prime
then G×H is also a cyclic group.

Example 2.6.1. If H1 < H,G1 < G are subgroups then H1 ×G1 is a subgroup of H ×G. However, not
every subgroup of H ×G is of this form. For example, the subgroups of Z/2Z×Z/2Z are {0}×{0}, {0}×
Z/2Z,Z/2Z× {0},Z/2Z× Z/2Z and the subgroup {(0, 0), (1, 1)} which is not a product of subgroups.

3. Cosets

Let G be a group and H a subgroup of G. A left coset of H in G is a subset S of G of the form

gH := {gh : h ∈ H}
for some g ∈ G. A right coset is a subset of G of the form

Hg := {hg : h ∈ H}
for some g ∈ G. For brevity we shall discuss only left cosets but the discussion with minor changes applies
for right cosets too.

Example 3.0.2. Consider the group S3 and the subgroup H = {1, (12)}. The following table lists the
left cosets of H. For an element g, we list the coset gH in the middle column, and the coset Hg in the
last column.

g gH Hg

1 {1, (12)} {1, (12)}
(12) {(12), 1} {(12), 1}
(13) {(13), (123)} {(13), (132)}
(23) {(23), (132))} {(23), (123))}
(123) {(123), (13)} {(123), (23)}
(132) {(132), (23)} {(132), (13)}

The first observation is that the element g such that S = gH is not unique. In fact, gH = kH if and only
if g−1k ∈ H. The second observation is that two cosets are either equal or disjoint; this is a consequence
of the following lemma.

Lemma 3.0.3. Define a relation g ∼ k if ∃h ∈ H such that gh = k. This is an equivalence relation such
that the equivalence class of g is precisely gH.

Proof. Since g = ge and e ∈ H the relation is reflexive. If gh = k for some h ∈ H then kh−1 = g and
h−1 ∈ H. Thus, the relation is symmetric. Finally, if g ∼ k ∼ ` then gh = k, kh′ = ` for some h, h′ ∈ H
and so g(hh′) = `. Since hh′ ∈ H we conclude that g ∼ ` and the relation is transitive. ¤

Thus, pictorially the cosets look like that:
Aside. One should note that in general gH 6= Hg; The table above provides an example.

Moreover, (13)H is not a right coset of H at all. A difficult theorem of P. Hall asserts that

given a finite group G and a subgroup H one can find a set g1, . . . , gd such that g1H, . . . , gdH

are precisely the lest cosets of H and Hg1, . . . , Hgd are precisely the right cosets of H.
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g1H g2H

G

gtH

Figure 3.1. Cosets of a subgroup H of a group G.

4. Lagrange’s theorem

Theorem 4.0.4. Let H < G. The group G is a disjoint union of left cosets of H. If G is of finite order
then the number of left cosets of H in G is |G|/|H|. We call the number of left cosets the index of H in
G and denote it by [G : H].

Proof. We have seen that there is an equivalence relation whose equivalence classes are the cosets of H.
Recall that different equivalence classes are disjoint. Thus,

G = ∪s
i=1giH,

a disjoint union of s cosets, where the gi are chosen appropriately. We next show that for every x, y ∈ G
the cosets xH, yH have the same number of elements.

Define a function
f : xH −→ yH, f(xh) = yh.

Note that f is well defined (xh = xh′ ⇒ h = h′), injective (f(xh) = yh = yh′ = f(xh′) ⇒ h = h′ ⇒ xh =
xh′) and surjective as every element of yH has the form yh for some h ∈ H hence is the image of xh.
Thus, |G| = s · |H| and s = [G : H]. ¤
Corollary 4.0.5. If G is a finite group then |H| divides |G|.
Remark 4.0.6. The converse does not hold. The group A4, which is of order 12, does not have a subgroup
of order 6.

Corollary 4.0.7. If G is a finite group then o(g) | |G| for all g ∈ G.

Proof. We saw that o(g) = |〈g〉|. ¤
Remark 4.0.8. The converse does not hold. If G is not a cyclic group then there is no element g ∈ G such
that o(g) = |G|.
Corollary 4.0.9. If the order of G is a prime number then G is cyclic.

Proof. From Corollary 4.0.7 we deduce that every element different from the identity has order equal to
|G|. Thus, every such element generates the group. ¤

5. Cyclic groups

Let G be a finite cyclic group of order n, G = 〈g〉.
Lemma 5.0.10. We have o(ga) = n/gcd(a, n).

Proof. Note that gt = gt−n and so gt = e if and only if n|t (cf. Corollary 1.2.2). Thus, the order of ga is
the minimal r such that ar is divisible by n. Clearly a ·n/gcd(a, n) is divisible by n so the order of ga is less
or equal to n/gcd(a, n). On the other hand if ar is divisible by n then, because n = gcd(a, n) ·n/gcd(a, n),
r is divisible by n/gcd(a, n). ¤



10 EYAL Z. GOREN

Corollary 5.0.11. The element ga generates G, 〈ga〉 = G, if and only if (a, n) = 1. Thus, the number of
generators of G is

ϕ(n) := ]{1 ≤ a ≤ n : (a, n) = 1}.
This function is called Euler’s phi function.

Proposition 5.0.12. For every h|n the group G has a unique subgroup of order h. This subgroup is cyclic.

Proof. We first show that every subgroup is cyclic. Let H be a non trivial subgroup. Then there is a
minimal 0 < a < n such that ga ∈ H and hence H ⊇ 〈ga〉. Let gr ∈ H. We may assume that r > 0.
Write r = ka + k′ for 0 ≤ k′ < a. Note that gr−ka ∈ H. The choice of a then implies that k′ = 0. Thus,
H = 〈ga〉.

Since gcd(a, n) = αa + βn we have ggcd(a,n) = (gn)β(ga)α ∈ H. Thus, ga−gcd(a,n) ∈ H. Therefore, by
the choice of a, a = gcd(a, n); that is, a|n. Thus, every subgroup is cyclic and of the form 〈ga〉 for a|n.
Its order is n/a. We conclude that for every b|n there is a unique subgroup of order b and it is cyclic,
generated by gn/b. ¤

Lemma 5.0.13. We have
n =

∑

d|n
ϕ(d).

(The summation is over positive divisors of n, including 1 and n.)7

Proof. Let G be a cyclic group of order n. Then we have

n = |G|
=

∑

1≤d≤n

]{g ∈ G : o(g) = d}

=
∑

d|n
]{g ∈ G : o(g) = d},

where we have used that the order of an element divides the order of the group.
Now, if h ∈ G has order d it generates a subgroup of order d. Such subgroup being unique, it follows

that all the elements of order d generate the same subgroup. That subgroup is a cyclic group of order d
and thus has ϕ(d) generators that are exactly the elements of order d. The formula follows. ¤

Proposition 5.0.14. Let G be a finite group of order n such that for h|n the group G has at most one
subgroup of order h then G is cyclic.

Proof. Consider an element g ∈ G of order h. The subgroup 〈g〉 it generates is of order h and has ϕ(h)
generators. We conclude that every element of order h must belong to this subgroup (because there is a
unique subgroup of order h in G) and that there are exactly ϕ(h) elements of order h in G.

On the one hand n =
∑n

d|n{num. elts. of order d} =
∑

d|n φ(d)εd, where εd is 1 if there is an element
of order d and is zero otherwise. On the other hand n =

∑
d|n φ(d). We conclude that εd = 1 for all d|n

and, in particular, εn = 1 and so there is an element of order n. This element is a generator of G. ¤

Corollary 5.0.15. Let F be a finite field then F× is a cyclic group.

Proof. Let q be the number of element of F. To show that for every h dividing q − 1 there is at most one
subgroup of order h we note that every element in that subgroup with have order dividing h and hence
will solve the polynomial xh − 1. That is, the h elements in that subgroup must be the h solutions of
xh − 1. In particular, this subgroup is unique. ¤

7This function has the following additional properties:

• If n and m are relatively prime then φ(nm) = φ(n)φ(m).
(This can be proved as follows. Using the Chinese Remainder Theorem Z/nmZ ∼= Z/nZ×Z/mZ as rings. Now calculate the
unit groups of both sides.)

• If p is a prime ϕ(pa) = pa − pa−1.
(This follows directly from the definition. Putting the two properties together, we find that:)

• ϕ(n) = n
Q

p|n(1− 1/p) if pa is the highest power of p dividing n.
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Remark 5.0.16. Though the groups (Z/pZ)× are cyclic for every prime p that doesn’t mean we know an
explicit generator. Artin’s primitive root conjecture states that 2 is a generator for infinitely many primes
p (the conjecture is the same for any prime number instead of 2). Work starting with R. Murty and R.
Gupta and continued with K. Murty and Heath-Brown had shown that for infinitely many primes p either
2, 3 or 5 are a primitive root.

6. Constructing subgroups

6.1. Commutator subgroup. Let G be a group. Define its commutator subgroup G′, or [G, G], to be the
subgroup generated by {xyx−1y−1; x, y ∈ G}. An element of the form xyx−1y−1 is called a commutator.
We use the notation [x, y] = xyx−1y−1. It is not true in general that every element in G′ is a commutator,
though every element is a product of commutators.

Example 6.1.1. We calculate the commutator subgroup of S3. First, note that every commutator is an
even permutation, hence contained in A3. Next, (12)(13)(12)(13) = (123) is in S′3. It follows that S′3 = A3.

6.2. Centralizer subgroup. Let H be a subgroup of G. We define its centralizer CG(H) to be the set
{g ∈ G : gh = hg, ∀h ∈ H}. One checks that it is a subgroup of G called the centralizer of H in G.

Given an element h ∈ G we may define CG(h) = {g ∈ G : gh = hg}. It is a subgroup of G called the
centralizer of h in G. One checks that CG(h) = CG(〈h〉) and that CG(H) = ∩h∈HCG(h).

Taking H = G, the subgroup CG(G) is the set of elements of G such that each of them commutes with
every other element of G. It has a special name; it is called the center of G and denoted Z(G).

Example 6.2.1. We calculate the centralizer of (12) in S5. We first make the following useful obser-
vation: τστ−1 is the permutation obtained from σ by changing its entries according to τ . For example:
(1234)[(12)(35)](1234)−1 = (1234)[(12)(35)](1432) = (1234)(1453) = (23)(45) and (23)(45) is obtained
from (12)(35) by changing the labels 1, 2, 3, 4, 5 according to the rule (1234).

Using this, we see that the centralizer of (12) in S5 is just S2 × S3 (Here S2 are the permutations of
1, 2 and S3 are the permutations of 3, 4, 5. Viewed this way they are subgroups of S5).

6.3. Normalizer subgroup. Let H be a subgroup of G. Define the normalizer of H in G, NG(H), to
be the set {g ∈ G : gHg−1 = H}. It is a subgroup of G. Note that H ⊂ NG(H), CG(H) ⊂ NG(H) and
H ∩ CG(H) = Z(H).

7. Normal subgroups and quotient groups

Let N < G. We say that N is a normal subgroup if for all g ∈ G we have gN = Ng; equivalently,
gNg−1 = N for all g ∈ G; equivalently, gN ⊂ Ng for all g ∈ G; equivalently, gNg−1 ⊂ N for all g ∈ G.
We will use the notation NCG to signify that N is a normal subgroup of G. Note that an equivalent way
to say that NCG is to say that N < G and NG(N) = G.

Example 7.0.1. The group A3 is normal in S3. If σ ∈ A3 and τ ∈ S3 then τστ−1 is an even permutation
because its sign is sgn(τ)sgn(σ)sgn(τ−1) = sgn(τ)2sgn(σ) = 1. Thus, τA3τ

−1 ⊂ A3.
The subgroup H = {1, (12)} is not a normal subgroup. Use the table above to see that (13)H 6= H(13).

Let NCG. Let G/N denote the set of left cosets of N in G. We show that G/N has a natural structure
of a group; it is called the quotient group of G by N .

Given two cosets aN and bN we define

aN ? bN = abN.
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We need to show this is well defined: if aN = a′N and bN = b′N then we should have abN = a′b′N . Now,
we know that for a suitable α, β ∈ N we have a′α = a, b′β = b. Thus, a′b′N = aαbβN = abb−1αbβN =
ab(b−1αb)N . Note that since NCG and α ∈ N also b−1αb ∈ N and so ab(b−1αb)N = abN .

One checks easily that N = eN is the identity of G/N and that (gN)−1 = g−1N . (Note that (gN)−1 -
the inverse of the element gN in the group G/N is also the set {(gn)−1 : n ∈ N} = Ng−1 = g−1N .)

Definition 7.0.2. A group is called simple if its only normal subgroups are the trivial ones {e} and G.

Remark 7.0.3. We shall later prove that An is a simple group for n ≥ 5. By inspection one find
that also An is simple for n ≤ 3. On the other hand A4 is not simple. The “Klein 4 group” V :=
{1, (12)(34), (13)(24), (14)(23)} is a normal subgroup of A4.

Recall the definition of the commutator subgroup G′ of G from §6.1. In particular, the notation [x, y] =
xyx−1y−1. One easily checks that g[x, y]g−1 = [gxg−1, gyg−1] and that [x, y]−1 = [y, x]. Hence, also
g[x, y]−1g−1 = [gxg−1, gyg−1]−1.

Proposition 7.0.4. The subgroup G′ is normal in G. The group G/G′ is abelian (it is called the abelian-
ization of G). Furthermore, if G/N is abelian then N ⊇ G′.

Proof. We know that G′ = {[x1, y1]ε1 · · · [xr, yr]εr : xi, yi ∈ G, εi = ±1}. It follows that

gG′g−1 = {[gx1g
−1, gy1g

−1]ε1 · · · [gxrg
−1, gyrg

−1]εr : xi, yi ∈ G, εi = ±1} ⊆ G′,

hence G′CG.
For every x, y ∈ G we have xG′ · yG′ = xyG′ = xy(y−1x−1yx)G′ = yxG′ = yG′ · xG′. Thus, G/G′ is

abelian. If G/N is abelian then for every x, y ∈ G we have xN · yN = yN · xN . That is, xyN = yxN ;
equivalently, x−1y−1xyN = N . Thus, for every x, y ∈ G we have xyx−1y−1 ∈ N . So N contains all the
generators of G′ and so N ⊇ G′. ¤

Lemma 7.0.5. Let B and N be subgroups of G, NCG.
(1) B ∩N is a normal subgroup of B.
(2) BN := {bn : b ∈ B, n ∈ N} is a subgroup of G. Also, NB is a subgroup of G. In fact, BN = NB.
(3) If BCG then BNCG and B ∩NCG.
(4) If B and N are finite then |BN | = |B||N |/|B ∩N |. The same holds for NB.

Proof. (1) B ∩N is a normal subgroup of B: First B ∩N is a subgroup of G, hence of B. Let b ∈ B
and n ∈ B ∩N . Then bnb−1 ∈ B because b, n ∈ B and bnb−1 ∈ N because NCG.

(2) BN := {bn : b ∈ B, n ∈ N} is a subgroup of G: Note that ee = e ∈ BN . If bn, b′n′ ∈ BN then
bnb′n′ = [bb′][{(b′)−1nb′}n′] ∈ BN . Finally, if bn ∈ BN then (bn)−1 = n−1b−1 = b−1[bn−1b−1] ∈
BN .

Note that BN = ∪b∈BbN = ∪b∈BNb = NB.
(3) If BCG then BNCG: We saw that BN is a subgroup. Let g ∈ G and bn ∈ BN then gbng−1 =

[gbg−1][gng−1] ∈ BN , using the normality of both B and N . If x ∈ B ∩N, g ∈ G then gxg−1 ∈ B
and gxg−1 ∈ N , because both are normal. Thus, gxg−1 ∈ B ∩N , which shows B ∩N is a normal
subgroup of G.

(4) If B and N are finite then |BN | = |B||N |/|B ∩N |: Define a map of sets,

f : B ×N −→ BN, (b, n)
f7→ bn.

to prove the assertion it is enough to prove that every fibre f−1x, x ∈ BN , has cardinality |B∩N |.
Suppose that x = bn, then for every y ∈ B ∩ N we have (by)(y−1n) = bn. This shows that

f−1(x) ⊇ {(by, y−1n) : y ∈ B ∩ N}, a set of |B ∩ N | elements. On the other hand, if bn = b1n1

then y1 = b−1
1 b = n1n

−1 and hence y1 ∈ B ∩ N . Let y = y−1
1 then (by)(y−1n) = b1n1. Thus,

f−1(x) = {(by, y−1n) : y ∈ B ∩N}. 8

¤

Remark 7.0.6. In general, if B, N are subgroups of G (that are not normal) then BN need not be a subgroup
of G. Indeed, consider the case of G = S3, B = {1, (12)}, N = {1, (13)} then BN = {1, (12), (13), (132)}

8Note that we do need to assume BN is a subgroup. In particular, we do not need to assume that B or N are normal.
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which is not a subgroup of S3. Thus, in general 〈B, N〉 ⊃ BN and equality does not hold. We can deduce
though that

|〈B,N〉| ≥ |B| · |N |
|B ∩N | .

This is a very useful formula. Suppose, for example, that (|B|, |N |) = 1 then |B ∩N | = 1 because B ∩N
is a subgroup of both B and N and so by Lagrange’s theorem: |B ∩N | divides both |B| and |N |. In this
case then |〈B,N〉| ≥ |B| · |N |. For example, any subgroup of order 3 of A4 generates A4 together with the
Klein group.

Simple Groups.
A group G is called simple if it has no non-trivial normal subgroups. Every group of prime
order is simple. A group of odd order, which is not prime, is not simple (Theorem of Feit
and Thompson). The classification of all finite simple groups is known. We shall later prove
that the alternating group An is a simple group for n ≥ 5.
Another family of simple groups is the following: Let F be a finite field and let SLn(F) be
the n×n matrices with determinant 1. It’s a group. Let T be the diagonal matrices with all
elements on the diagonal being equal (hence the elements of T are in bijection with solutions
of xn = 1 in F); it is the center of SL2(F). Let PSLn(F) = SLn(F)/T . This is a simple group
for n ≥ 2 and any F, the only exceptions being n = 2 and F ∼= Z/2Z,Z/3Z. (See Rotman,
op. cit., §8).
One can gain some understanding about the structure of a group from its normal subgroups.
If NCG then we have a short exact sequence

1 −→ N −→ G −→ G/N −→ 1.

(That means that all the arrows are group homomorphisms and the image of an arrow is

exactly the kernel of the next one.) Thus, might hope that the knowledge of N and G/N

allows to find the properties of G. This works best when the map G −→ G/N has a section,

i.e., there is a homomorphism f : G/N −→ N such that πN ◦f = Id. Then G is a semi-direct

product. We’ll come back to this later in the course.
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Part 2. The Isomorphism Theorems

8. Homomorphisms

8.1. Basic definitions. Let G and H be two groups. A homomorphism f : G −→ H is a function
satisfying f(ab) = f(a)f(b). It is a consequence of the definition that f(eG) = eH and that f(a−1) =
f(a)−1.

A homomorphism is called an isomorphism if it is 1 : 1 and surjective. In that case, the set theoretic
inverse function f−1 is also automatically is a homomorphism. Thus, f is an isomorphism if and only if
there exists a homomorphism g : H −→ G such that h ◦ g = idG, g ◦ h = idH .

Two groups, G and H, are called isomorphic if there exists an isomorphism f : G −→ H. We use
the notation G ∼= H. For all practical purposes two isomorphic groups should be considered as the same
group.

Example 8.1.1. The sign map sgn : Sn −→ {±1} is a surjective group homomorphism.

Example 8.1.2. Let G be a cyclic group of order n, say G = 〈g〉. The group G is isomorphic to Z/nZ:
Indeed, define a function f : G −→ Z/nZ by f(ga) = a. Note that f is well defined because if ga = gb

then n|(b− a). It is a homomorphism: gagb = ga+b. It is easy to check that f is surjective. It is injective,
because f(ga) = 0 implies that n|a and so ga = g0 = e in the group G.

The kernel Ker(f) of a homomorphism f : G −→ H is by definition the set

Ker(f) = {g ∈ G : f(g) = eH}.
For example, the kernel of the sign homomorphism Sn −→ {±1} is the alternating group An.

Example 8.1.3. We have an isomorphism S3
∼= D6 coming from the fact that a symmetry of a triangle

(an element of D6) is completely determined by its action on the vertices.

Example 8.1.4. The Klein V -group {1, (12)(34), (13)(24), (14)(23)} is isomorphic to Z/2Z × Z/2Z by
(12)(34) 7→ (0, 1), (13)(24) 7→ (1, 0), (14)(23) 7→ (1, 1).

Lemma 8.1.5. The set Ker(f) is a normal subgroup of G; f is injective if and only if Ker(f) = {e}. For
every h ∈ H the preimage f−1(h) := {g ∈ G : f(g) = h} is a coset of Ker(f).

Proof. First, since f(e) = e we have e ∈ Ker(f). If x, y ∈ Ker(f) then f(xy) = f(x)f(y) = ee = e so
xy ∈ Ker(f) and f(x−1) = f(x)−1 = e−1 = e so x−1 ∈ Ker(f). That shows that Ker(f) is a subgroup. If
g ∈ G, x ∈ Ker(f) then f(gxg−1) = f(g)f(x)f(g−1) = f(g)ef(g)−1 = e. Thus, Ker(f)CG.

If f is injective then there is a unique element x such that f(x) = e. Thus, Ker(f) = {e}. Suppose
that Ker(f) = {e} and f(x) = f(y). Then e = f(x)f(y)−1 = f(xy−1) so xy−1 = e. That is x = y and f
is injective.

More generally, note that f(x) = f(y) iff f(x−1y) = e iff x−1y ∈ Ker(f) iff y ∈ xKer(f). Thus, if h ∈ H
and f(x) = h then the fibre f−1(h) is precisely xKer(f). ¤

Lemma 8.1.6. If NCG then the canonical map πN : G −→ G/N , given by πN (a) = aN , is a surjective
homomorphism with kernel N .

Proof. We first check that π = πN is a homomorphism: π(ab) = abN = aNbN = π(a)π(b). Since every
element of G/N is of the form aN for some a ∈ G, π is surjective. Finally, a ∈ Ker(π) iff π(a) = aN = N
(the identity element of G/N) iff a ∈ N . ¤

Corollary 8.1.7. A subgroup N < G is normal if and only if it is the kernel of a homomorphism.
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8.2. Behavior of subgroups under homomorphisms. Let f : G −→ H be a group homomorphism.

Proposition 8.2.1. If A < G then f(A) < H, in particular f(G) < H. If B < H then f−1(B) < G.
Furthermore, if BCH then f−1(B)CG. If, moreover, f is surjective then ACG implies f(A)CH.

Proof. Since f(e) = e, e ∈ f(A). Furthermore, the identities f(x)f(y) = f(xy), f(x)−1 = f(x−1) show
that f(A) is closed under multiplication and inverses. Thus, f(A) is a subgroup.

Let B < H. Since f(e) = e we see that e ∈ f−1(B). Let x, y ∈ f−1(B) then f(xy) = f(x)f(y) ∈ B
because both f(x) and f(y) are in B. Thus, xy ∈ f−1(B). Also, f(x−1) = f(x)−1 ∈ B and so x−1 ∈
f−1(B). This shows that f−1(B) < G.

Suppose now that BCH. Let x ∈ f−1(B), g ∈ G. Then f(gxg−1) = f(g)f(x)f(g)−1. Since f(x) ∈ B
and BCH it follows that f(g)f(x)f(g)−1 ∈ B and so gxg−1 ∈ f−1(B). Thus, f−1(B)CG.

The last claim follows with similar arguments. ¤
Remark 8.2.2. It is not necessarily true that if ACG then f(A)CH. For example, consider G = {1, (12)}
with its embedding into S3.

9. The first isomorphism theorem

Theorem 9.0.3. (The First Isomorphism Theorem) Let f : G −→ H be a homomorphism of groups.
There is an injective homomorphism f ′ : G/Ker(f) −→ H such that the following diagram commutes:

G
f //

πKer(f) $$IIIIIIIII H

G/Ker(f)
f ′

::uuuuuuuuu

.

In particular, G/Ker(f) ∼= f(G).

Proof. Let N = Ker(f). We define f ′ by

f ′(aN) = f(a).

The map f ′ is well defined: if aN = bN then a = bn for some n ∈ N . Then f ′(aN) = f(a) =
f(bn) = f(b)f(n) = f(b) = f ′(bN). Therefore, f ′ is well defined. Now f ′(aNbN) = f ′(abN) = f(ab) =
f(a)f(b) = f ′(aN)f ′(bN), which shows f ′ is a homomorphism. If f ′(aN) = f(a) = e then a ∈ N and so
aN = N . That is, f ′ is injective and surjective onto its image. We conclude that f ′ : G/N −→ f(G) is an
isomorphism.

Finally, f ′(πN (a)) = f ′(aN) = f(a) so f ′ ◦ πN = f . Therefore, the diagram commutes. ¤

G

G/N

N

K

K/N

Example 9.0.4. Let us construct two homomorphisms

fi : D8 −→ S2.

We get the first homomorphism f1 be looking at the action of the symmetries on the axes {a, b}. Thus,
f1(x) = (ab), f1(y) = 1 (x permutes the axes, while y fixes the axes – though not point-wise). Similarly,
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if we let A,B be the lines whose equation is a = b and a = −b, then D8 acts as permutations on {A,B}
and we get a homomorphism f2 : D8 −→ S2 such that f2(x) = (AB), f2(y) = (AB).

The homomorphism fi is surjective and therefore the kernel Ni = Ker(fi) has 4 elements. We find that
N1 = {1, x2, y, x2y} and N2 = {1, x2, xy, x3y}. By the first isomorphism theorem we have D8/Ni

∼= S2.
Now, quite generally, if gi : G −→ Hi are group homomorphisms then g : G −→ H1 ×H2, defined by

g(r) = (g1(r), g2(r)) is a group homomorphism with kernel Ker(g1) ∩ Ker(g2). One uses the notation
g = (g1, g2). Applying this to our situation, we get a homomorphism

f = (f1, f2) : D8 −→ S2 × S2,

whose kernel is {1, x2}. It follows that the image of f has 4 elements and hence f is surjective. That is,

D8/〈x2〉 ∼= S2 × S2.

b

B

A

a

10. The second isomorphism theorem

Theorem 10.0.5. Let G be a group. Let B < G, NCG. Then

BN/N ∼= B/(B ∩N).

Proof. Recall from Lemma 7.0.5 that B ∩NCB. We define a function

f : BN −→ B/B ∩N, f(bn) = b ·B ∩N.

We need first to show it is well defined. Recall from the proof of Lemma 7.0.5 that if bn = b′n′ then b′ = by
for some y ∈ B ∩N . Therefore, b ·B ∩N = by ·B ∩N = b′ ·B ∩N and f is well defined.

We show now that f is a homomorphism. Note that (bn)(b1n1) = (bb1)(b−1
1 nb1)n1 and so f(bn ·b1n1) =

bb1 · B ∩ N = b · B ∩ N · b1 · B ∩ N = f(b)f(b1), which shows f is a homomorphism. Moreover, f is
surjective: b ·B ∩N = f(b).

The kernel of f is {bn : f(b) = e, b ∈ B,n ∈ N} = {bn : b ∈ B ∩N, b ∈ B, n ∈ N} = (B ∩N)N = N.
By the First Isomorphism Theorem BN/N ∼= B/B ∩N . ¤

Remark 10.0.6. This is often used as follows: Let f : G −→ H be a group homomorphism with kernel N .
Let B < G. What can we say about the image of B under f? Well f(B) = f(BN) and f : BN −→ H
has kernel N . We conclude that f(B) ∼= BN/N ∼= B/(B ∩N).

In fact, this idea gives another proof of the theorem. Consider the homomorphism π : G −→ G/N .
Its restriction to BN is a homomorphism with kernel N and so, by the First Isomorphism Theorem,
f(BN) ∼= BN/N . The restriction of f to B is also a group homomorphism with kernel B ∩ N . Thus,
f(B) ∼= B/(B ∩N). But, f(B) = f(BN) and we are done.
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11. The third isomorphism theorem

Theorem 11.0.7. Let f : G −→ H be a surjective homomorphism of groups.
(1) f induces a bijection:

{subgps of G containing Ker(f)} ↔ {subgps of H}.
Given by G1 7→ f(G1), G1 < G, and in the other direction by H1 7→ f−1(H1), H1 < H.

(2) Suppose that Ker(f) < G1 < G2. Then G1CG2 if and only if f(G1)Cf(G2). Moreover, in that
case,

G2/G1
∼= f(G2)/f(G1).

(3) Let N < K < G be groups, such that NCG,KCG. Then

(G/N)/(K/N) ∼= G/K.

Proof. We proved in general (Prop. 8.2.1) that if G1 < G then f(G1) < H and if H1 < H then f−1(H1) <
G. Since f is a surjective map we have f(f−1(H1)) = H1. We need to show that if Ker(f) < G1 then
f−1(f(G1)) = G1. Clearly f−1(f(G1)) ⊇ G1. Let x ∈ f−1(f(G1)) then f(x) ∈ f(G1). Choose then g ∈ G1

such that f(g1) = f(x) and write x = g(g−1x). Note that f(g−1x) = eH and so g−1x ∈ Ker(f) ⊆ G1.
Thus, x = g(g−1x) ∈ G1.
Consider the restriction of f to G2 as a surjective group homomorphism f : G2 −→ f(G2). We proved
under those conditions that if G1CG2 then f(G1)Cf(G2). If f(G1)Cf(G2) then we also proved that
f−1(f(G1))CG2. Since G1 ⊃ Ker(f) we have f−1(f(G1)) = G1.

It remains to show that if Ker(f) < G1CG2 then G2/G1
∼= f(G2)/f(G1). The homomorphism obtained

by composition
G2 −→ f(G2) −→ f(G2)/f(G1),

is surjective and has kernel f−1(f(G1)) = G1. The claim now follows from the First Isomorphism Theorem.
We apply the previous results in the case where H = G/N and f : G −→ G/N is the canonical map.

We consider the case G1 = K,G2 = G. Then G/K ∼= f(G)/f(K) = (G/N)/(K/N). ¤
Example 11.0.8. Consider again the group homomorphism f : D8 −→ S2 × S2 constructed in Exam-
ple 9.0.4. Using the third isomorphism theorem we conclude that the graph of the subgroups of D8

containing 〈x2〉 is exactly that of S2 × S2 (analyzed in Example 2.6.1). Hence we have:

D8

zz
zz

zz
zz

DD
DD

DD
DD

K1

CC
CC

CC
CC

K2 K3

{{
{{

{{
{{

〈x2〉

{1}

S2 × S2

vv
vv

vv
vv

v

HH
HH

HH
HH

H

H1

GG
GG

GG
GG

G H2 H3

ww
ww

ww
ww

w

{e}

We’ll see later that this does not exhaust the list of subgroups of D8. Here we have
K1 = 〈x〉,
K2 = 〈y, x2〉,
K3 = 〈xy, x2〉

and
H1 = f(K1) = {(1, 1), ((ab), (AB))},
H2 = f(K2) = {(1, 1), (1, (AB))},
H3 = f(K3) = {(1, 1), ((ab), 1)}.

Example 11.0.9. Let F be a field and let N = {diag[f, f, . . . , f ] : f ∈ F×} be the set of diagonal matrices
with the same non-zero element in each diagonal entry. We proved in an assignment that N = Z(GLn(F))
and is therefore a normal subgroup. The quotient group

PGLn(F) := GLn(F)/N
is called the projective linear group.
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Let Pn−1(F) be the set of equivalence classes of non-zero vectors in Fn under the equivalence v ∼ w if
there is f ∈ F∗ such that fv = w; that is, the set of lines through the origin. The importance of the group
PGLn(F) is that it acts as automorphisms on the projective n− 1-space Pn−1(F).

Let
π : GLn(F) −→ PGLn(F)

be the canonical homomorphism. The function

det : GLn(F) −→ F∗

is a group homomorphism, whose kernel, the matrices with determinant one, is denoted SLn(F). Con-
sider the image of SLn(F) in PGLn(F); it is denoted PSLn(F). We want to analyze it and the quotient
PGLn(F)/PSLn(F).

The group PSLn(F) is equal to π(SLn(F)) = π(SLn(F)N) and is therefore isomorphic to SLn(F)N/N ∼=
SLn(F)/SLn(F) ∩N = SLn(F)/µn(F), where by µN (F) we mean the group {f ∈ F× : fn = 1} (where we
identify f with diag[f, f, . . . , f ]). Therefore,

PSLn(F) ∼= SLn(F)/µn(F).

We have PGLn(F)/PSLn(F) ∼= (GLn(F)/N)/(SLn(F)N/N) ∼= GLn(F)/SLn(F)N . Let F×(n) be the
subgroup of F× consisting of the elements {fn : f ∈ F×}. Under the isomorphism GLn(F)/SLn(F) ∼= F×
the subgroup SLn(F)N corresponds to F×(n). We conclude that

PGLn(F)/PSLn(F) ∼= F×/F×(n).

12. The lattice of subgroups of a group

Let G be a group. Consider the set Λ(G) of all subgroups of G. Define an order on this set by A ≤ B
if A is a subgroup of B. This relation is transitive and A ≤ B ≤ A implies A = B. That is, the relation
is really an order.

The set Λ(G) is a lattice. Every two elements A,B have a minimum A ∩ B (that is if C ≤ A,C ≤ B
then C ≤ A∩B) and a maximum 〈A,B〉 - the subgroup generated by A and B (that is C ≥ A,C ≥ B then
C ≥ 〈A,B〉). If A ∈ Λ(G) then let ΛA(G) to be the set of all elements in Λ(G) that are greater or equal to
A. It is a lattice in its own right. We have the property that if NCG then ΛN (G) ∼= Λ(G/N) as lattices
– This is the Third Isomorphism Theorem.

Here is the lattice of subgroups of D8. Normal subgroup are boxed.

D8

HH
HH

HH
HH

H

TTTTTTTTTTTTTTTTTTTT

〈x〉 〈y, x2〉

SSSSSSSSSSSSSSSSSSSS

yy
yy

yy
yy

〈yx, x2〉

kkkkkkkkkkkkkkkkkkk

RRRRRRRRRRRRRRRRR
subgroups of order 4

〈x2〉 〈y〉

wwwwwwwwww
〈yx〉

jjjjjjjjjjjjjjjjjjjjjj 〈yx2〉

ggggggggggggggggggggggggggggggggg 〈yx3〉

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee subgroups of order 2

{e}

How to prove that these are all the subgroups? Note that every proper subgroup has order 2 or 4 by
Lagrange’s theorem. If it is cyclic then it must be one of the above, because the diagram certainly
contains all cyclic subgroups. Else, it can only be of order 4 and every element different from e has order
2. It is east to verify that any two distinct elements of order 2 generate one of the subgroups we have
listed.

There are at least two ways in which one uses this concept:
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• To examine whether two groups can be isomorphic. Isomorphic groups have isomorphic lattices
of subgroups. For example, the groups D8 and Q both have 8 elements. The lattice of subgroups
of Q is

Q

zzzzzzzz

DDDDDDDD

〈i〉

CC
CC

CC
CC

〈j〉 〈k〉

zz
zz

zz
zz

〈−1〉

{1}
We conclude that Q and D8 are not isomorphic.

• To recognize quotients. Consider for example D8/〈x2〉. This is a group of 4 elements. Let us give
ourselves that there are only two groups of order 4 up to isomorphism and those are (Z/2Z)2 and
Z/4Z. The lattice of subgroups for them are

(Z/2Z)2

nnnnnnnnnnnn

QQQQQQQQQQQQ

{(0, 0), (0, 1)}

QQQQQQQQQQQQ
{(0, 0), (1, 1)} {(0, 0), (1, 0)}

mmmmmmmmmmmm

{(0, 0)}

Z/4Z

{0, 2}

{0}
We conclude that D8/〈x2〉 ∼= (Z/2Z)2.
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Part 3. Group Actions on Sets

13. Basic definitions

Let G be a group and let S be a non-empty set. We say that G acts on S if we are given a function

G× S −→ S, (g, s) 7−→ g ? s,

such that;
(i) e ? s = s for all s ∈ S;
(ii) (g1g2) ? s = g1 ? (g2 ? s) for all g1, g2 ∈ G and s ∈ S.

Given an action of G on S we can define the following sets. Let s ∈ S. Define the orbit of s

Orb(s) = {g ? s : g ∈ G}.
Note that Orb(s) is a subset of S, equal to all the images of the element s under the action of the elements
of the group G. We also define the stabilizer of s to be

Stab(s) = {g ∈ G : g ? s = s}.
Note that Stab(s) is a subset of G. In fact, it is a subgroup, as the next Lemma states.

One should think of every element of the group as becoming a symmetry of the set S. We’ll make more
precise later. For now, we just note that every element g ∈ G defines a function S −→ S by s 7→ gs. This
function, we’ll see later, is bijective.

14. Basic properties

Lemma 14.0.10. (1) Let s1, s2 ∈ S. We say that s1 is related to s2, i.e., s1 ∼ s2, if there exists
g ∈ G such that

g ? s1 = s2.

This is an equivalence relation. The equivalence class of s1 is its orbit Orb(s1).
(2) Let s ∈ S. The set Stab(s) is a subgroup of G.
(3) Suppose that both G and S have finitely many elements. Then

|Orb(s)| = |G|
|Stab(s)| .

Proof. (1) We need to show reflexive, symmetric and transitive. First, we have e ? s = s and hence
s ∼ s, meaning the relation is reflexive. Second, if s1 ∼ s2 then for a suitable g ∈ G we have
g ? s1 = s2. Therefore

g−1 ? (g ? s1) = g−1 ? s2

⇒ (g−1g) ? s1 = g−1 ? s2

⇒ e ? s1 = g−1 ? s2

⇒ s1 = g−1 ? s2

⇒ g−1 ? s2 = s1

⇒ s2 ∼ s1.

It remains to show transitive. If s1 ∼ s2 and s2 ∼ s3 then for suitable g1, g2 ∈ G we have

g1 ? s1 = s2, g2 ? s2 = s3.

Therefore,
(g2g1) ? s1 = g2 ? (g1 ? s1) = g2 ? s2 = s3,

and hence s1 ∼ s3.
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Moreover, by the very definition the equivalence class of an element s1 of S is all the elements
of the form g ? s1 for some g ∈ G, namely, Orb(s1).

(2) Let H = Stab(s). We have to show that: (i) e ∈ H; (2) If g1, g2 ∈ H then g1g2 ∈ H; (iii) If g ∈ H
then g−1 ∈ H.

First, by definition of group action we have

e ? s = s.

Therefore e ∈ H. Next suppose that g1, g2 ∈ H, i.e.,

g1 ? s = s, g2 ? s = s.

Then
(g1g2) ? s = g1 ? (g2 ? s) = g1 ? s = s.

Thus, g1g2 ∈ H. Finally, if g ∈ H then g ? s = s and so

g−1 ? (g ? s) = g−1 ? s

⇒ (g−1g) ? s = g−1 ? s

⇒ e ? s = g−1 ? s

⇒ s = g−1 ? s,

and therefore g−1 ∈ H.
(3) We claim that there exists a bijection between the left cosets of H and the orbit of s. If we show

that, then by Lagrange’s theorem,

|Orb(s)| = no. of left cosets of H = index of H = |G|/|H|.
Define a function

{left cosets of H} φ−→ Orb(s),
by

φ(gH) = g ? s.

We claim that φ is a well defined bijection. First
Well-defined: Suppose that g1H = g2H. We need to show that the rule φ would give the same result
whether we take the representative g1 or the representative g2 to the coset, that is, we need to show

g1 ? s = g2 ? s.

Note that g−1
1 g2 ∈ H, i.e., (g−1

1 g2) ? s = s. We get

g1 ? s = g1 ? ((g−1
1 g2) ? s)

= (g1(g−1
1 g2)) ? s

= g2 ? s.

φ is surjective: Let t ∈ Orb(s) then t = g ? s for some g ∈ G. Thus,

φ(gH) = g ? s = t,

and we get that φ is surjective.
φ is injective: Suppose that φ(g1H) = φ(g2H). We need to show that g1H = g2H. Indeed,

φ(g1H) = φ(g2H)
⇒ g1 ? s = g2 ? s

⇒ g−1
2 ? (g1 ? s) = g−1

2 ? (g2 ? s)

⇒ (g−1
2 g1) ? s = (g−1

2 g2) ? s

⇒ (g−1
2 g1) ? s = e ? s

⇒ (g−1
2 g1) ? s = s

⇒ g−1
2 g1 ∈ Stab(s) = H

⇒ g1H = g2H.

¤
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Corollary 14.0.11. The set S is a disjoint union of orbits.

Proof. The orbits are the equivalence classes of the equivalence relation ∼ defined in Lemma 14.0.10. Any
equivalence relation partitions the set into disjoint equivalence classes. ¤
We have in fact seen that every orbit is in bijection with the cosets of some group. If H is any subgroup
of G let us use the notation G/H for its cosets (note though that if H is not normal this is not a group,
but just a set). We saw that if s ∈ S then there is a natural bijection G/Stab(s) ↔ Orb(s). Thus, the
picture of S is as follows

 S

Orb(a) = G/Stab(a)

Orb(b) = G/Stab(b)

Orb(c) = G/Stab(c)

a

b c

Figure 14.1. The set decomposes into orbits; each is the cosets of a subgroup.

15. Some examples

Example 15.0.12. The group Sn acts on the set {1, 2, . . . , n}. The action is transitive, i.e., there is only
one orbit. The stabilizer of i is S{1,2,...,i−1,i+1,...,n} ∼= Sn−1.

Example 15.0.13. The group GLn(F) acts on Fn, and also Fn−{0}. The action is transitive on Fn−{0}
and has two orbits on Fn. The stabilizer of 0 is of course GLn(F); the stabilizer of a non-zero vector v1

can be written in a basis w1, w2, . . . , wn with w1 = v1 as the matrices of the shape


1 ∗ . . . ∗
0 ∗ . . . ∗
...

... . . .
...

0 ∗ . . . ∗


 .

Example 15.0.14. Let H be a subgroup of G then we have an action

H ×G −→ G, (h, g) 7→ hg.

In this example, H is “the group” and G is “the set”. Here the orbits are right cosets of H and the stabilizers
are trivial. Since G =

∐
Orb(gi) =

∐
Hgi we conclude that |G| =

∑
i |Orb(gi)| =

∑
i |H|/|Stab(gi)| =∑

i |H| and therefore that |H| | |G| and that [G : H], the number of cosets, is |G|/|H|. We have recovered
Lagrange’s theorem.

Example 15.0.15. Let H be a subgroup of G. Let S = {gH : g ∈ G} be the set of left cosets of H in G.
Then we have an action

G× S −→ S, (a, bH) 7→ abH.

Here there is a unique orbit (we say G acts transitively). The stabilizer of gH is the subgroup gHg−1.

Example 15.0.16. Let G = R/2πZ. It acts on the sphere by rotations: an element θ ∈ G rotates the
sphere by angle θ around the north-south axes. The orbits are latitude lines and the stabilizers of every
point is trivial, except for the poles whose stabilizer is G. See Figure 15.1.

Example 15.0.17. Let G be the dihedral group D16. Recall that G is the group of symmetries of a
regular octagon in the plane.

G = {e, x, x2, . . . , x7, y, yx, yx2, . . . , yx7},
where x is the rotation clockwise by angle 2π/8 and y is the reflection through the y-axis. We have the
relations

x8 = y2 = e, yxy = x−1.
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θ

Figure 15.1. Action on the sphere by rotation.

We let S be the set of colorings of the octagon ( = necklaces laid on the table) having 4 red vertices
(rubies) and 4 green vertices (sapphires). The group G acts on S by its action on the octagon.

For example, the coloring s0 in Figure 15.2 is certainly preserved under x2 and under y. Therefore, the
stabilizer of s0 contains at least the set of eight elements

(15.1) {e, x2, x4, x6, y, yx2, yx4, yx6}.
Remember that the stabilizer is a subgroup and, by Lagrange’s theorem, of order dividing 16 = |G|. On

y

x

Figure 15.2. A necklace with 4 rubies and 4 sapphires.

the other hand, Stab(s0) 6= G because x 6∈ Stab(s0). It follows that the stabilizer has exactly 8 elements
and is equal to the set in (15.1).

According to Lemma 14.0.10 the orbit of s0 is in bijection with the left cosets of Stab(s0) = {e, x2, x4, x6, y, yx2, yx4, yx6}.
By Lagrange’s theorem there are two cosets. For example, Stab(s0) and xStab(s0) are distinct cosets. The
proof of Lemma 14.0.10 tells us how to find the orbit: it is the set

{s0, xs0},
portrayed in Figure 15.3.

Figure 15.3. The orbit of the necklace.
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16. Cayley’s theorem

Theorem 16.0.18. Every finite group of order n is isomorphic to a subgroup of Sn.

We first prove a lemma that puts group actions in a different context. Let A be a finite set. Let ΣA be
the set of bijective functions A −→ A. Then, ΣA is a group. In fact, if we let s1, . . . , sn be the elements of
A, we can identify bijective functions A −→ A with permutations of {1, . . . , n} and we see that ΣA

∼= Sn.

Lemma 16.0.19. To give an action of a group G on a set A is equivalent to giving a homomorphism
G −→ ΣA. The kernel of this homomorphism is ∩a∈AStab(a).

Proof. An element g define a function φg : A −→ A by φg(a) = ga. We have φe being the identity
function. Note that φhφg(a) = φh(ga) = hga = φhg(a) for every a and hence φhφg = φhg. In particular,
φgφg−1 = φg−1φg = Id. This shows that every φg is a bijection and the map

Ψ : G −→ ΣA, g
Ψ7→ φg,

is a homomorphism. (Conversely, given such a homomorphism Ψ, define a group action by g?a := Ψ(g)(a).)
The kernel of this homomorphism is the elements g such that φg is the identity, i.e., φg(a) = a for all

a ∈ A. That is, g ∈ Stab(a) for every a ∈ A. The set of such elements g is just ∩a∈AStab(a). ¤

Proof. (of Theorem) Consider the action of G on itself by multiplication (Example 15.0.14), (g, g′) 7→ gg′.
Recall that all stabilizers are trivial. Thus this action gives an injective homomorphism

G −→ ΣG
∼= Sn,

where n = |G|. ¤

16.1. Applications to construction of normal subgroups. Let G be a group and H a subgroup of
finite index n. Consider the action of G on the set of cosets G/H of H and the resulting homomorphism

Ψ : G −→ ΣG/H
∼= Σn,

where n = [G : H]. The kernel K of Ψ is

∩a∈G/HStab(a) = ∩g∈GStab(gH) = ∩g∈GgHg−1.

Being a kernel of a homomorphism, K is normal in G and is contained in H. Furthermore, since the
resulting homomorphism G/K −→ Sn is injective we get that |G/K| = [G : K] divides [G : H]! = |Sn|. In
particular, we conclude that every subgroup H of G contains a subgroup K which is normal in G and of
index at most [G : H]!. Thus, for example, a simple infinite group has no subgroups of finite index.

In fact, the formula K = ∩g∈GgHg−1 shows that K is the maximal subgroup of H which is normal in
G. Indeed, if K ′CG,K ′ < H then K = gKg−1 ⊂ gHg−1 and we see that K ′ ⊆ K.

17. The Cauchy-Frobenius formula

17.1. A formula for the number of orbits.

Theorem 17.1.1. (CFF) Let G be a finite group acting on a finite set S. Let N be the number of orbits
of G in S. Define

I(g) = |{s ∈ S : g ? s = s}|
(the number of elements of S fixed by the action of g). Then

(17.1) N =
1
|G|

∑

g∈G

I(g).



GROUPS AND RINGS 25

Remark 17.1.2. If N = 1 we say that G acts transitively on S. It means exactly that: For every s1, s2 ∈ S
there exists g ∈ G such that g ? s1 = s2.

Proof. We define a function

T : G× S −→ {0, 1}, T (g, s) =

{
1 g ? s = s

0 g ? s 6= s
.

Note that for a fixed g ∈ G we have
I(g) =

∑

s∈S

T (g, s),

and that for a fixed s ∈ S we have
|Stab(s)| =

∑

g∈G

T (g, s).

Let us fix representatives s1, . . . , sN for the N disjoint orbits of G in S. Now,

∑

g∈G

I(g) =
∑

g∈G

(∑

s∈S

T (g, s)

)
=

∑

s∈S


∑

g∈G

T (g, s)




=
∑

s∈S

|Stab(s)| =
∑

s∈S

|G|
|Orb(s)|

=
N∑

i=1

∑

s∈Orb(si)

|G|
|Orb(s)| =

N∑

i=1

∑

s∈Orb(si)

|G|
|Orb(si)|

=
N∑

i=1

|G|
|Orb(si)| · |Orb(si)| =

N∑

i=1

|G|

= N · |G|.
¤

Corollary 17.1.3. Let G be a finite group acting transitively on a finite S. Suppose that |S| > 1. Then
there exists g ∈ G without fixed points.

Proof. By contradiction. Suppose that every g ∈ G has a fixed point in S. That is, suppose that for every
g ∈ G we have

I(g) ≥ 1.

Since I(e) = |S| > 1 we have that ∑

g∈G

I(g) > |G|.

By Cauchy-Frobenius formula, the number of orbits N is greater than 1. Contradiction. ¤

17.2. Applications to combinatorics.

Example 17.2.1. How many roulettes with 11 wedges painted 2 blue, 2 green and 7 red are there when
we allow rotations?

Let S be the set of painted roulettes. Let us enumerate the sectors of a roulette by the numbers 1, . . . , 11.

The set S is a set of
(

11
2

) (
9
2

)
= 1980 elements (choose which 2 are blue, and then choose out of the nine

left which 2 are green).
Let G be the group Z/11Z. It acts on S by rotations. The element 1 rotates a painted roulette by angle

2π/11 anti-clockwise. The element n rotates a painted roulette by angle 2nπ/11 anti-clockwise. We are
interested in N – the number of orbits for this action. We use CFF.

The identity element always fixes the whole set. Thus I(0) = 1980. We claim that if 1 ≤ i ≤ 10 then i
doesn’t fix any element of S. Indeed, suppose that 1 ≤ i ≤ 10 and i fixes s. Then so does 〈i〉 = Z/11Z (the
stabilizer is a subgroup). But any coloring fixed under rotation by 1 must be single colored! Contradiction.
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Applying CFF we get

N =
1
11

10∑
n=0

I(n) =
1
11
· 1980 = 180.

Example 17.2.2. How many roulettes with 12 wedges painted 2 blue, 2 green and 8 red are there when
we allow rotations?

Let S be the set of painted roulettes. Let us enumerate the sectors of a roulette by the numbers 1, . . . , 12.

The set S is a set of
(

12
2

)(
10
2

)
= 2970 elements (choose which 2 are blue, and then choose out of the

ten left which 2 are green).
Let G be the group Z/12Z. It acts on S by rotations. The element 1 rotates a painted roulette by angle

2π/12 anti-clockwise. The element n rotates a painted roulette by angle 2nπ/12 anti-clockwise. We are
interested in N – the number of orbits for this action. We use CFF.

The identity element always fixes the whole set. Thus I(0) = 2970. We claim that if 1 ≤ i ≤ 11 and
i 6= 6 then i doesn’t fix any element of S. Indeed, suppose that i fixes a painted roulette. Say in that
roulette the r-th sector is blue. Then so must be the i + r sector (because the r-th sector goes under the
action of i to the r+ i-th sector). Therefore so must be the r+2i sector. But there are only 2 blue sectors!
The only possibility is that the r + 2i sector is the same as the r sector, namely, i = 6.

If i is equal to 6 and we enumerate the sectors of a roulette by the numbers 1, . . . , 12 we may write i as
the permutation

(1 7)(2 8)(3 9)(4 10)(5 11)(6 12).

In any coloring fixed by i = 6 the colors of the pairs (1 7), (2 8), (3 9), (4 10), (5 11) and (6 12) must be
the same. We may choose one pair for blue, one pair for green. The rest would be red. Thus there are
30 = 6 · 5 possible choices. We summarize:

element g I(g)
0 2970
i 6= 6 0
i = 6 30

Applying CFF we get that there are

N =
1
12

(2970 + 30) = 250

different roulettes.

Example 17.2.3. In this example S is the set of necklaces made of four rubies and four sapphires laid
on the table. We ask how many necklaces there are when we allow rotations and flipping-over.

We may talk of S as the colorings of a regular octagon, four vertices are green and four are red. The
group G = D16 acts on S and we are interested in the number of orbits for the group G.

The results are the following

element g I(g)
e 70
x, x3, x5, x7 0
x2, x6 2
x4 6
yxi for i = 0, . . . , 7 6

We explain how the entries in the table are obtained:

The identity always fixes the whole set S. The number of elements in S is
(

8
4

)
= 70 (chossing which

4 would be green).
The element x cannot fix any coloring, because any coloring fixed by x must have all sections of the

same color (because x = (1 2 3 4 5 6 7 8)). If xr fixes a coloring s0 so does (xr)r = x(r2) because the
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stabilizer is a subgroup. Apply that for r = 3, 5, 7 to see that if xr fixes a coloring so does x , which is
impossible. 9

Now, x2 written as a permutation is (1 3 5 7)(2 4 6 8). We see that if, say 1 is green so are 3, 5, 7 and
the rest must be red. That is, all the freedom we have is to choose whether the cycle (1 3 5 7) is green or
red. This gives us two colorings fixed by x2. The same rational applies to x6 = (8 6 4 2)(7 5 3 1).

Consider now x4. It may written in permutation notation as (1 5)(2 6)(3 7)(4 8). In any coloring

fixed by x4 each of the cycles (1 5)(2 6)(3 7) and (4 8) must be single colored. There are thus
(

4
2

)
= 6

possibilities (Choosing which 2 out of the four cycles would be green).
It remains to deal with the elements yxi. We recall that these are all reflections. There are two kinds

of reflections. One may be written using permutation notation as

(i1 i2)(i3 i4)(i5 i6)

(with the other two vertices being fixed. For example y = (2 8)(3 7)(4 6) is of this form). The other kind
is of the form

(i1 i2)(i3 i4)(i5 i6)(i7 i8).
(For example yx = (1 8)(2 7)(3 6)(4 5) is of this sort). Whatever is the case, one uses similar reasoning to
deduce that there are 6 colorings preserved by a reflection.

One needs only apply CFF to get that there are

N =
1
16

(70 + 2 · 2 + 6 + 8 · 6) = 8

distinct necklaces.

17.3. The game of 16 squares. 10 Sam Loyd (1841-1911) was America’s greatest puzzle expert and
invented thousands of ingenious and tremendously popular puzzles.

In this game, we are given a 4 × 4 box with 15 squares numbered 1, 2, . . . , 15 and one free spot. At
every step one is allowed to move an adjacent square into the vacant spot. For example

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

7→
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

7→
1 2 3 4
5 6 7 8
9 10 12
13 14 11 15

7→
1 2 3 4
5 6 7 8
9 10 12
13 14 11 15

7→
1 2 3 4
5 6 7 8
9 14 10 12
13 11 15

Can one pass from the original position to the position below?

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

It turns out that the answer is no. Can you prove it? Apparently, the puzzle was originally marketed with
the tiles in the impossible position with the challenge to rearrange them into the initial position!

17.4. Rubik’s cube. 11 In the case of the Rubik cube there is a group G acting on the cube. The group
G is generated by 6 basic moves a, b, c, d, e, f (each is a rotation of a certain “third of the cube”) and could
be thought of as a subgroup of the symmetric group on 54 = 9 × 6 letters. It is called the cube group.
The order of the Cube Group is 227 · 314 · 53 · 72 · 11 = 43, 252, 003, 274, 489, 856, 000, while the order of
S54 is 230843697339241380472092742683027581083278564571807941132288000000000000.

9x(32) = x9 = x because x8 = e, etc.
10This doesn’t have much to do with group theory. At least an elementary solution is available with no notions from

groups. It is given here for sheer fun and as illustration of “acting on a set”.
11Also known as the Hungarian cube.
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Figure 17.1. Loyd’s 14− 15 puzzle.

One is usually interested in solving the cube. Namely, reverting it to its original position. Since the
current position was gotten by applying an element τ of G, in group theoretic terms we attempt to find
an algorithm of writing every G in terms of the generators a, b, c, d, e, f since then also τ−1 will have such
an expression, which is nothing else than a series of moves that return the cube to its original position. It
is natural to deal with the set of generators a±1, b±1, . . . , f±1 (why do 3 times a when you can do a−1??).
A common question is what is the maximal number of basic operations that may be required to return a
cube to its original position. Otherwise said, what is the diameter of the Cayley graph? But more than
that, is there a simple algorithm of finding for every element of G an expression in terms of the generators?

The Cayley graph.

Suppose that {gα : α ∈ I} are generators for G. We define an oriented graph taking as

vertices the elements of G and taking for every g ∈ G an oriented edge from g to ggα. If we

forget the orientation, the property of {gα : α ∈ I} being a set of generators is equivalent to

the graph being connected.

Suppose that the set of generators consists of n elements. Then, by definition, from every

vertex we have n vertices emanating and also n arriving. We see therefore that all Cayley

graphs are regular graphs. This, in turn, gives a systematic way of constructing regular

graphs.

Suppose we take as a group the symmetric group (see below) Sn and the transpositions as

generators. One can think of a permutation as being performed in practice by successively

swapping the places of two elements. Thus, in the Cayley graph, the distance between a

permutation and the identity (the distance is defined as the minimal length of a path between

the two vertices) is the minimal way to write a permutation as a product of transpositions,

and could be thought of as a certain measure of the complexity of a transposition.
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The figure below gives the Cayley graph of S3 with respect to the generating

set of transpositions. It is a 3-regular oriented graph and a 6 regular graph.
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Now, since the Cayley graph of G has 12 edges emanating from each vertex (and is connected by
definition of the cube group) it follows that to reach all positions one is forced to allow at least log12 |G| ∼
18.2, thus at least 19, moves.12

Figure 17.2. The Rubik Cube.

12There is a subtle point we are glossing over here. It is that perhaps there are operations that move the cube but leave
the overall coloring fixed (”we move the pieces but in the end it looks the same”). That is, is the stabilizer of every position
of the cube trivial? It seems that the answer is yes; note that it is enough to prove that for the original position (as stabilizers
of elements in the same orbit are conjugate subgroups). Here, it seems that the key point is to consider the corner pieces
and then the edge pieces. STOP PRESS: Keith Conrad tells me that’s wrong. It is possible to bring the cube back to the
same initial setting only that the center pieces are rotated. He says “... in fact, the stabilizers are not trivial. It is possible
to return the cube to the original position with the center faces rotated. This can be seen if you make a mark across the
boundary between the center face and an adjacent face, and then mess up and try to solve the cube.” (something I would
never try doing!) So the argument above should be modified. This will have to wait till I teach the course again....
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Part 4. The Symmetric Group

18. Conjugacy classes

Let σ ∈ Sn. We write σ as a product of disjoint cycles:

σ = σ1σ2 · · ·σr.

Since disjoint cycles commute, the order does not matter and we may assume that the length of the cycles
is non-decreasing. Namely, if we let |(i1i2 . . . it)| = t (we shall call it the length of the cycle; it is equal to
its order as an element of Sn), then

|σ1| ≤ |σ2| ≤ · · · ≤ |σr|.
We may also allow cycles of length 1 (they simple stand for the identity permutation) and then we find
that

n = |σ1|+ |σ2|+ · · ·+ |σr|.
We therefore get a partition p(σ) of the number n, that is, a set of non-decreasing positive integers
1 ≤ a1 ≤ a2 ≤ · · · ≤ ar such that n = a1 + a2 + · · · + ar. Note that every partition is obtained from a
suitable σ.

Lemma 18.0.1. Two permutations, σ and ρ, are conjugate (namely there is a τ such that τστ−1 = ρ) if
and only if p(σ) = p(ρ).

Proof. Recall the formula we used before, if σ(i) = j then (τστ−1)(τ(i)) = τ(j). This implies that for
every cycle (i1 i2 . . . it) we have

τ(i1 i2 . . . it)τ−1 = (τ(i1) τ(i2) . . . τ(it)).

In particular, since τστ−1 = (τσ1τ
−1)(τσ2τ

−1) · · · (τσrτ
−1), a product of disjoint cycles, we get that

p(σ) = p(τστ−1).

Conversely, suppose that p(σ) = p(ρ). Say

σ = σ1σ2 . . . σr

= (i11 . . . i1t(1))(i
2
1 . . . i2t(2)) . . . (ir1 . . . irt(r)),

and
ρ = ρ1ρ2 . . . ρr

= (j1
1 . . . j1

t(1))(j
2
1 . . . j2

t(2)) . . . (jr
1 . . . jr

t(r)).

Define τ by
τ(iab ) = ja

b ,

then τστ−1 = ρ. ¤

Corollary 18.0.2. Let p(n) be the number of partitions of n.13 There are p(n) conjugacy classes in Sn.

Next, we discuss conjugacy classes in An. Note that if σ ∈ An then since AnCSn also τστ−1 ∈ An.
That is, all the Sn-conjugacy classes of elements of An are in An. However, we would like to consider the
An-conjugacy classes of elements of An.

Lemma 18.0.3. The Sn-conjugacy class of an element σ ∈ An is a disjoint union of [Sn : AnCSn(σ)]
An-conjugacy classes. In particular, it is one An-conjugacy class if there is an odd permutation commuting
with σ and is two An-conjugacy class if there is no odd permutation commuting with σ. In the latter case,
the Sn-conjugacy class of σ is the disjoint union of the An-conjugacy class of σ and the An-conjugacy
class of τστ−1, where τ can be chosen to be any odd permutation.

13Since 2 = 2 = 1+1, 3 = 3 = 1+2 = 1+1+1, 4 = 4 = 2+2 = 1+3 = 1+1+2 = 1+1+1+1, 5 = 5 = 2+3 = 1+4 =
1+1+3 = 1+2+2 = 1+1+1+2 = 1+1+1+1+1 . . . we get p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11, . . . .

The function p(n) is asymptotic to eπ
√

2n/3

4n
√

3
.
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Proof. Let A be the Sn-conjugacy class of σ. Write A =
∐

α∈J Aα, a disjoint union of An-conjugacy
classes. We first note that Sn acts on the set B = {Aα : α ∈ J}. Indeed, if Aα is the An-conjugacy class
of σα, and ρ ∈ Sn then define ρAαρ−1 to be the An-conjugacy class of ρσαρ−1. This is well defined: if
σ′α is another representative for the An-conjugacy class of σα then σ′α = τσατ−1 for some τ ∈ An. It
follows that ρσ′αρ−1 = ρτσατ−1ρ−1 = (ρτρ−1)(ρσαρ−1)(ρτρ−1)−1 is in the An-conjugacy class of ρσαρ−1

(because ρτρ−1 ∈ An).
The action of Sn is transitive on B. Consider the An-conjugacy class of σ and denote it by A0. The

stabilizer of A0 is just AnCSn(σ). Indeed, ρA0ρ
−1 = A0 if and only if ρσρ−1 is in the same An-conjugacy

class as σ. Namely, if and only if ρσρ−1 = τστ−1 for some τ ∈ An, equivalently, (τ−1ρ)σ = σ(τ−1ρ), that
is (τ−1ρ) ∈ CSn(σ) which is to say that ρ ∈ AnCSn(σ).

We conclude that the size of B is the length of the orbit of A0 and hence is of size [Sn : AnCSn
(σ)].

Since [Sn : An] = 2, we get that [Sn : AnCSn
(σ)] = 1 or 2, with the latter happening if and only if

An ⊇ CSn(σ). That is, if and only if σ does not commute with any odd permutation. Moreover, the orbit
consists of the An-conjugacy classes of the elements gσ, g running over a complete set of representatives
for the cosets of AnCSn(σ) in Sn. ¤

19. The simplicity of An

In this section we prove that An is a simple group for n 6= 4. The cases where n < 4 are trivial; for n = 4
we have seen it fails (the Klein 4-group is normal). We shall focus on the case n ≥ 5 and prove the theorem
inductively. We therefore first consider the case n = 5.

We make the following general observation:

Lemma 19.0.4. Let NCG then N is a disjoint union of G-conjugacy classes.

Proof. Distinct conjugacy classes, being orbits for a group action, are always disjoint. If N is normal and
n ∈ N then its conjugacy class {gng−1 : g ∈ G} is contained in N . ¤

Let us list the conjugacy classes of S5 and their sizes.
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Conjugacy classes in S5

cycle type representative size of conjugacy class order even?
5 (12345) 24 5 X
1+4 (1234) 30 4 ×
1+1+3 (123) 20 3 X
1+ 2+ 2 (12)(34) 15 2 X
1 + 1 + 1 + 2 (12) 10 2 ×
1 + 1+ 1+ 1+ 1 1 1 1 X
2+ 3 (12)(345) 20 6 ×

Let τ be a permutation commuting with (12345). Then

(12345) = τ(12345)τ−1 = (τ(1) τ(2) τ(3) τ(4) τ(5))

and so τ is the permutation i 7→ i + n for n = τ(1) − 1. In particular, τ = (12345)n−1 and so is an even
permutation. We conclude that the S5-conjugacy class of (12345) breaks into two A5-conjugacy classes,
with representatives (12345), (21345).

One checks that (123) commutes with the odd permutation (45). Therefore, the S5-conjugacy class of
(123) is also an A5-conjugacy class. Similarly, the permutation (12)(34) commutes with the odd permuta-
tion (12). Therefore, the S5-conjugacy class of (12)(34) is also an A5-conjugacy class. We get the following
table for conjugacy classes in A5.

Conjugacy classes in A5

cycle type representative size of conjugacy class order
5 (12345) 12 5
5 (21345) 12 5
1+1+3 (123) 20 3
1+ 2+ 2 (12)(34) 15 2
1 + 1+ 1+ 1+ 1 1 1 1

If NCA5 then |N | divides 60 and is the sum of 1 and some of the numbers in (12, 12, 20, 15). One checks
that this is impossible unless N = A5. We deduce

Lemma 19.0.5. The group A5 is simple.

Theorem 19.0.6. The group An is simple for n ≥ 5.

Proof. The proof is by induction on n. We may assume that n ≥ 6. Let N be a normal subgroup of An

and assume N 6= {1}.

First step: There is a permutation ρ ∈ N, ρ 6= 1 and 1 ≤ i ≤ n such that ρ(i) = i.
Indeed, let σ ∈ N be a non-trivial permutation and write it as a product of disjoint non-trivial cycles, σ =

σ1σ2 . . . σs, say in decreasing length. Suppose that σ1 is (i1i2 . . . ir), where r ≥ 3. Then conjugating by the
transposition τ = (i1i2)(i5i6), we get that τστ−1σ ∈ N , τστ−1σ(i1) = i1 and if r > 3 τστ−1σ(i2) = i4 6=
i2. If r = 3 then σ = (i1i2i3)(i4 . . . ) . . . . Take τ = (i1i2)(i3i4) then τστ−1σ(i1) = i1 and τστ−1σ(i2) =
τσ(i4) ∈ {i3, i5}. Thus, τστ−1σ is a permutation of the kind we were seeking.

It still remains to consider the case where each σi is a transposition. Then, if σ = (i1i2)(i3i4) then
σ moves only 4 elements and thus fixes some element and we are done, else σ = (i1i2)(i3i4)(i5i6) . . . .
Let τ = (i1i2)(i3i5) then τστ−1σ = (i2i1)(i5i4)(i3i6) . . . (i1i2)(i3i4)(i5i6) · · · = (i3i5)(i4i6) . . . and so is a
permutation of the sort we were seeking.

Second step: N = An.
Consider the subgroups Gi = {σ ∈ An : σ(i) = i}. We note that each Gi is isomorphic to An−1 and

hence is simple. By the preceding step, for some i we have that N ∩Gi is a non-trivial normal subgroup
of Gi, hence equal to Gi.

Next, note that (12)(34)G1(12)(34) = G2 and, similarly, all the groups Gi are conjugate in An to each
other. It follows that N ⊇ 〈G1, G2, . . . , Gn〉. Now, every element in Sn is a product of (usually not
disjoint) transpositions and so every element σ in An is a product of an even number of transpositions,
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σ = λ1µ1 . . . λrµr (λi, µi transpositions). Since n > 4 every product λiµi belongs to some Gj and we
conclude that 〈G1, G2, . . . , Gn〉 = An.

¤
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Part 5. p-groups, Cauchy’s and Sylow’s Theorems

20. The class equation

Let G be a finite group. G acts on itself by conjugation: g ? h = ghg−1. The class equation is the
partition of G to orbits obtained this way. The orbits are called in this case conjugacy classes. Note that
the stabilizer of h ∈ G is CG(h) and so its orbit has length [G : CG(h)]. Note thus the elements with orbit
of length 1 are precisely the elements in the center Z(G) of G. We get

(20.1) |G| = |Z(G)|+
∑

reps.x6∈Z(G)

|G|
|CG(x)| .

Remark 20.0.7. One can prove that for every n > 0 there are only finitely many finite groups with exactly
n conjugacy classes. (One uses the following fact: Given n > 0 and a rational number q there are only
finitely many n-tuples (c1, . . . , cn) of natural numbers such that q = 1

c1
+ · · ·+ 1

cn
.)

For example, the only group with one conjugacy class is the trivial group {1}; the only group with two
conjugacy classes is Z/2Z; the only groups with 3 conjugacy classes are Z/3Z and S3.

21. p-groups

Let p be a prime. A finite group G is called a p-group if its order is a positive power of p.

Lemma 21.0.8. Let G be a finite p group. Then the center of G is not trivial.

Proof. We use the class equation 20.1. Note that if x 6∈ Z(G) then CG(x) 6= G and so the integer |G|
|CG(x)|

is divisible by p. Thus, the left hand side of

|G| −
∑

reps.x6∈Z(G)

|G|
|CG(x)| = |Z(G)|

is divisible by p, hence so is the right hand side. In particular |Z(G)| ≥ p. ¤

Theorem 21.0.9. Let G be a finite p group, |G| = pn.
(1) For every normal subgroup HCG, H 6= G, there is a subgroup KCG such that H < K < G and

[K : H] = p.
(2) There is a chain of subgroups H0 = {1} < H1 < · · · < Hn = G, such that each HiCG and

|Hi| = pi.

Proof. (1) The group G/H is a p group and hence its center is a non-trivial group. Take an element
e 6= x ∈ Z(G/H); its order is pr for some r. Then y = xpr−1

has exact order p. Let K ′ = 〈y〉. It is
a normal subgroup of G/H of order p (y commutes with any other element). Let K = π−1

H (K ′).
By the Third Isomorphism Theorem K is a normal subgroup of G, K/H ∼= K ′ so [K : H] = p.

(2) The proof just given shows that every p group has a normal subgroup of p elements. Now apply
repeatedly the first part.

¤

21.1. Examples of p groups.

21.1.1. Groups of order p. We proved in the assignments that every such group is cyclic, thus isomorphic
to Z/pZ.

21.1.2. Groups of order p2. We shall prove in the assignments that every such group is commutative. It
then follows from the structure theorem for finite abelian groups that such a group is either isomorphic to
Z/p2Z or to (Z/pZ)2.
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21.1.3. Groups of order p3. First, there are the abelian groups Z/p3Z, Z/p2Z× Z/pZ and (Z/pZ)3.
We shall prove in the assignments that if G is not abelian then G/Z(G) cannot be cyclic. It follows

that Z(G) ∼= Z/pZ and G/Z(G) ∼= (Z/pZ)2. One example of such a group is provided by the matrices



1 a b
0 1 c
0 0 1


 ,

where a, b, c ∈ Fp. Note that if p ≥ 3 then every element in this group is of order p (use (I+N)p = I+Np),
yet the group is non-abelian. (This group, using a terminology to be introduced later, is a semi-direct
product (Z/pZ)2 o Z/pZ.) More generally the upper unipotent matrices in GLn(Fp) are a group of order
pn(n−1)/2 in which every element has order p if p ≥ n. Notice that these groups are non-abelian.

Getting back to the issue of non-abelian groups of order p3, one can prove that there is precisely one
additional non-abelian group of order p3. It is generated by two elements x, y satisfying: xp = yp2

=
1, xyx−1 = y1+p. (This group is a semi-direct product (Z/p2Z)o Z/pZ.)

21.2. A few words on free groups. Let x1, . . . , xd be formal symbols. The free group on x1, . . . , xd

is the set of expressions (called “words”) y1 . . . yt, where each yi is a symbol xj or x−1
j , taken under the

equivalence relation generated by the following basic equivalence: if v, w are words then

vxjx
−1
j w ∼ vw, vx−1

j xjw ∼ vw.

We remark that the empty word is allowed. We define multiplication of two words v, w by putting them
together into one word

v ? w = vw.

One checks that this is well defined on equivalence classes, that it is an associative operation, that the
(equivalence class of the) empty word is the identity, and that every element has an inverse: (y1 . . . yt)−1 =
y−1

t . . . y−1
1 . We thus get a group, called the free group of rank d, denoted F (d). It has the following

properties:
(1) given a group G, and d elements s1, . . . sd in G, there is a unique group homomorphism f :

F (d) −→ G such that f(xi) = si. Indeed, one first defines for a word y1 . . . yt, yi = xei

n(i), ei ∈
{±1}, f(y1 · · · yt) = se1

n(1) · · · set

n(t). One checks that equivalent words have the same image and so
gets a well defined function F (d) → G. It is easy to verify it is a homomorphism.

(2) if G is a group generated by d elements there is a surjective group homomorphism F (d) −→ G.
This follows immediately from the previous point. If s1, . . . , sd are generators take the homomor-
phism taking xi to si.

(3) if w1, . . . wr are words in F (d), let N be the minimal normal subgroup containing all the wi (such
exists!). The group F (d)/N is also denoted by 〈x1, . . . , xd|w1, . . . , wr〉 and is said to be given by
the generators x1, . . . xd and relations w1, . . . , wr. For example, one can prove that Z ∼= F (1),
Z/nZ ∼= 〈x1|xn

1 〉, Z2 ∼= 〈x1, x2|x1x2x
−1
1 x−1

2 〉, S3
∼= 〈x1, x2|x2

1, x
3
2, (x1x2)2〉, and more generally

D2n = 〈x, y|xn, y2, yxyxy〉.
(4) if d = 1 then F (d) ∼= Z but if d > 1 then F (d) is a non-commutative infinite group. In fact, for

every k, Sk is a homomorphic image of F (d) if d ≥ 2.

21.2.1. Some famous problems in group theory. Fix positive integers d, n. The Burnside problem asks if
a group generated by d elements in which every element x satisfies xn = 1 is finite. Every such group is
a quotient of the following group B(d, n): it is the free group F (d) generated by x1, . . . , xd moded out
by the minimal normal subgroup containing the expressions fn where f is an element of F (d). It turns
out that in general the answer is negative; B(d, n) is infinite for d ≥ 2, n ≥ 4381, n odd. There are some
instances where it is finite: d ≥ 2, n = 2, 3, 4, 6.

One can then ask, is there a finite group B0(d, n) such that every finite group G, generated by d elements
and in which fn = 1 for every element f ∈ G, is a quotient of B0(d, n)? E. Zelmanov, building on the
work of many others, proved that the answer is yes. He received the 1994 Fields medal for this.

The word problem asks whether there is an algorithm (guaranteed to stop in finite time) that determines
whether a finitely presented group, that is a group gives by generators and relations as 〈x1, . . . , xd|w1, . . . , wr〉
for some integers d, r, is the trivial group or not. It is known that the answer to this question (and almost
any variation on it!) is NO. This has applications to topology. It is known that every finitely presented
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group is the fundamental group of a manifold14 of dimension 4. It then follows that there is no good
classification of 4-manifolds. If one can decide if a manifold X is isomorphic to the 4-dimensional sphere
or not, one can decide the question of whether the fundamental group of X is isomorphic to that of the
sphere, which is the trivial group, and so solve the word problem.

22. Cauchy’s Theorem

One application of group actions is to provide a simple proof of an important theorem in the theory of
finite groups.

Theorem 22.0.1. (Cauchy) Let G be a finite group of order n and let p be a prime dividing n. Then G
has an element of order p.

Proof. Let S be the set consisting of p-tuples (g1, . . . , gp) of elements of G, considered up to cyclic permu-
tations. Thus if T is the set of p-tuples (g1, . . . , gp) of elements of G, S is the set of orbits for the action
of Z/pZ on T by cyclic shifts . One may therefore apply CFF and get

|S| = np − n

p
+ n.

Note that n 6 ||S| .
Now define an action of G on S. Given g ∈ G and (g1, . . . , gp) ∈ S we define

g(g1, . . . , gp) = (gg1, . . . , ggp).

This is a well defined action .
Since the order of G is n, since n 6 ||S|, and since S is a disjoint union of orbits of G, there must be an

orbit Orb(s) whose size is not n. However, the size of an orbit is |G|/|Stab(s)|, and we conclude that there
must an element (g1, . . . , gp) in S with a non-trivial stabilizer. This means that for some g ∈ G, such that
g 6= e, we have

(gg1, . . . , ggp) is equal to (g1, . . . , gp) up to a cyclic shift.

This means that for some i we have

(gg1, . . . , ggp) = (gi+1, gi+2, gi+3, . . . , gp, g1, g2, . . . , gi).

Therefore, gg1 = gi+1, g2g1 = ggi+1 = g2i+1, . . . , gpg1 = · · · = gpi+1 = g1 (we always read the indices mod
p). That is, there exists g 6= e with

gp = e.

¤

23. Sylow’s Theorems

Let G be a finite group and let p be a prime dividing its order. Write |G| = prm, where (p,m) = 1. By
a p-subgroup of G we mean a subgroup whose order is a power of p. By a maximal p subgroup of G we
mean a p-subgroup of G not contained in a strictly larger p-subgroup.

Theorem 23.0.2. Every maximal p-subgroup of G has order pr (such a subgroup is called a Sylow p-
subgroup) and such a subgroup exists. All Sylow p-subgroups are conjugate to each other. The number np

of Sylow p-subgroups satisfies: (i) np|m; (ii) np ≡ 1 (mod p).

14A manifold of dimension 4 is a space that locally looks like R4. The fundamental group is a topological construction
that associate a group to any topological space. The group has as its elements equivalent classes of closed loops in the space,
starting and ending at some arbitrarily chosen point, where if we can deform, within the space, one loop to another we
consider them as the same element of the fundamental group.
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Remark 23.0.3. To say that P is conjugate to Q means that there is a g ∈ G such that gPg−1 = Q. Recall
that the map x 7→ gxg−1 is an automorphism of G. This implies that P and Q are isomorphic as groups.

Another consequence is that to say there is a unique p-Sylow subgroup is the same as saying that a
p-Sylow is normal. This is often used this way: given a finite group G the first check in ascertaining
whether it is simple or not is to check whether the p-Sylow subgroup is unique for some p dividing the
order of G. Often one engages in combinatorics of counting how many p-Sylow subgroups can be, trying
to conclude there can be only one for a given p and hence getting a normal subgroup.

We first prove a lemma that is an easy case of Cauchy’s Theorem 22.0.1:

Lemma 23.0.4. Let A be a finite abelian group, let p be a prime dividing the order of A. Then A has an
element of order p.

Proof. We prove the result by induction on |A|. Let N be a maximal subgroup of A, distinct from A. If
p divides the order of N we are done by induction. Otherwise, let x 6∈ N and let B = 〈x〉. By maximality
the subgroup BN is equal to A. On the other hand |BN | = |B| · |N |/|B ∩N |. Thus, p divides the order
of B. That is the order of x is pa for some a and so the order of xa is precisely p. ¤

Proposition 23.0.5. There is a p-subgroup of G of order pr.

Proof. We prove the result by induction on the order of G. Assume first that p divides the order of Z(G).
Let x be an element of Z(G) of order p and let N = 〈x〉, a normal subgroup. The order of G/N is pr−1m
and by induction it has a p-subgroup H ′ of order pr−1. Let H be the preimage of H ′. It is a subgroup of
G such that H/N ∼= H ′ and thus H has order |H ′| · |N | = pr.

Consider now the case where p does not divide the order of Z(G). Consider the class equation

|G| = |Z(G)|+
∑

reps.x6∈Z(G)

|G|
|CG(x)| .

We see that for some x 6∈ Z(G) we have that p does not divide |G|
|CG(x)| . Thus, pr divides |CG(x)|. The

subgroup CG(x) is a proper subgroup of G because x 6∈ Z(G). Thus, by induction CG(x), and hence G,
has a p-subgroup of order pr. ¤

Lemma 23.0.6. Let P be a maximal p-subgroup and Q any p-subgroup then

Q ∩ P = Q ∩NG(P ).

Proof. Since P ⊂ NG(P ) also Q∩P ⊂ Q∩NG(P ). Let H = Q∩NG(P ). Then, since PCNG(P ) we have
that HP is a subgroup of NG(P ). Its order is |H| · |P |/|H ∩P | and so a power of p. Since P is a maximal
p-subgroup we must have HP = P and thus H ⊂ P . ¤

Proof. (Of Theorem) Let P be a Sylow subgroup of G. Such exists by Proposition 23.0.5. Let

S = {P1, . . . , Pa}
be the set of conjugates of P = P1. That is, the subgroups gPg−1 one gets by letting g vary over G. Note
that for a fixed g the map P −→ gPg−1, x 7→ gxg−1 is a group isomorphism. Thus, every Pi is a Sylow
p-subgroup. Our task is to show that every maximal p-subgroup is an element of S and find out properties
of a.

Let Q be any p-subgroup of G. The subgroup Q acts by conjugation on S. The size of Orb(Pi) is
|Q|/|StabQ(Pi)|. Now StabQ(Pi) = Q ∩ NG(Pi) = Q ∩ Pi by Lemma 23.0.6. Thus, the orbit consists of
one element if Q ⊂ Pi and is a proper power of p otherwise.

Take first Q to be P1. Then, the orbit of P1 has size 1. Since P1 is a maximal p-subgroup it is not
contained in any other p-subgroup, thus the size of every other orbit is a power of p. It follows, using
that S is a disjoint union of orbits, that a = 1 + tp for some t. Note also that a = |G|/|NG(P )| and thus
divides |G|.

We now show that all maximal p-subgroups are conjugate. Suppose, to the contrary, that Q is a maximal
p-subgroup which is not conjugate to P . Thus, for all i, Q 6= Pi and so Q ∩ Pi is a proper subgroup of Q.
It follows then that S is a union of disjoint orbit all having size a proper power of p. Thus, p|a. This is a
contradiction. ¤
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23.1. Examples and applications.

23.1.1. p-groups. Every finite p-group is of course the only p-Sylow subgroup (trivial case).

23.1.2. Z/6Z. In every abelian group the p-Sylow subgroups are normal and unique. The 2-Sylow subgroup
is 〈3〉 and the 3-Sylow subgroup is 〈2〉.
23.1.3. S3. Consider the symmetric group S3. Its 2-Sylow subgroups are given by {1, (12)}, {1, (13)}, {1, (23)}.
Note that indeed 3|3 = 3!/2 and 3 ≡ 1 (mod 2). It has a unique 3-Sylow subgroup {1, (123), (132)}. This
is expected since n3|2 = 3!/3 and n3 ≡ 1 (mod 3) implies n3 = 1.

23.1.4. S4. We want to find the 2-Sylow subgroups. Their number n2|3 = 24/8 and is congruent to 1
modulo 2. It is thus either 1 or 3. Note that every element of S4 has order 1, 2, 3, 4. The number of
elements of order 3 is 8 (the 3-cycles). Thus, we cannot have a unique subgroup of order 8 (it will contain
any element of order 2 or 4). We conclude that n2 = 3. One such subgroup is D8 ⊂ S4; the rest are
conjugates of it.

Further, n3|24/3 and n3 ≡ 1 (mod 3). If n3 = 1 then that unique 3-Sylow would need to contain all 8
element of order 3 but is itself of order 3. Thus, n3 = 4.

Remark 23.1.1. A group of order 24 is never simple, though it does not mean that one of the Sylow
subgroups is normal, as the example of S4 shows. However, consider the representation of a group G of
order 24 on the cosets of P , where P is one of its 2-Sylow subgroup. It gives us, as we have seen in the
past, a normal subgroup of G, contained in P , whose index divides 6 = [G : P ]! and hence is non-trivial.

Suppose that G = S4 now and call this subgroup K. Then, we see that |K| = 4; it is preserved under
conjugation hence is a subgroup of all three 2-Sylow subgroups, say P, P ′, P ′′. We have the following
picture
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yyyy
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23.1.5. Groups of order pq. Let p < q be primes. Let G be a group of order pq. Then nq|p, nq ≡ 1
(mod q). Since p < q we have nq = 1 and the q-Sylow subgroup is normal (in particular, G is never
simple). Also, np|q, np ≡ 1 (mod p). Thus, either np = 1, or np = q and the last possibility can happen
only for q ≡ 1 (mod p).

We conclude that if p - (q − 1) then both the p-Sylow subgroup P and the q-Sylow subgroup Q are
normal. Note that the order of P ∩ Q divides both p and q and so is equal to 1. Let x ∈ P, y ∈ Q then
[x, y] = (xyx−1)y−1 = x(yx−1y−1) ∈ P ∩Q = {1}. Thus, PQ, which is equal to G, is abelian.

We shall later see that whenever p|(q − 1) there is a non-abelian group of order pq (in fact, unique up
to isomorphism). The case of S3 falls under this.

23.1.6. Groups of order p2q. Let G be a group of order p2q, where p and q are distinct primes. We prove
that G is not simple:

If q < p then np ≡ 1 (mod p) and np|q < p, which implies that np = 1 and the p-Sylow subgroup is
normal.

Suppose that p < q, then nq ≡ 1 (mod q) and nq|p2, which implies that nq = 1 or p2. If nq = 1 then
the q-Sylow subgroup is normal. Assume that nq = p2. Each pair of the p2 q-Sylow subgroups intersect
only at the identity (since q is prime). Hence they account for 1 + p2(q− 1) elements. Suppose that there
were 2 p-Sylow subgroups. They intersect at most at a subgroup of order p. Thus, they contribute at
least 2p2 − p new elements. All together we got at least 1 + p2(q − 1) + 2p2 − p = p2q + p2 − p + 1 > p2q
elements. That’s a contradiction and so np = 1; the p-Sylow subgroup is normal.

Remark 23.1.2. A theorem of Burnside states that a group of order paqb with a + b > 1 is not simple.
You will prove in the assignments that groups of order pqr (p < q < r primes) are not simple. Note that
|A5| = 60 = 22 · 3 · 5 and A5 is simple. A theorem of Feit and Tompson says that a finite simple group is
either of prime order, or of even order.
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23.1.7. GLn(F). Let F be a finite field with q elements, q a power of a prime p. The order of GLn(F) is
(qn−1)(qn−q) · · · (qn−qn−1) = q(n−1)n/2(qn−1)(qn−1−1) · · · (q−1). Thus, a p-Sylow has order q(n−1)n/2.
One such subgroup consists of the upper triangular matrices with 1 on the diagonal (the unipotent group):



1 ∗ . . . ∗
0 1 · · · ∗

. . .
0 0 . . . 1



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Part 6. Finitely Generated Abelian Groups, Semi-direct Products and Groups of Low
Order

24. The structure theorem for finitely generated abelian groups

The structure theorem will be proved in the next semester as a corollary of the structure theorem for
modules over a principal ideal domain. That same theorem will also yield the Jordan canonical form of a
matrix.

Theorem 24.0.3. Let G be a finitely generated abelian group. Then there exists a unique non-negative
integer r and integers 1 < n1|n2| . . . |nt (t ≥ 0) such that

G ∼= Zr × Z/n1Z× · · · × Z/ntZ.

Remark 24.0.4. The integer r is called the rank of G. The subgroup in G that corresponds to Z/n1Z ×
· · ·×Z/ntZ under such an isomorphism is canonical (independent of the isomorphism). It is the subgroup
of G of elements of finite order, also called the torsion subgroup of G and sometime denoted Gtor.

On the other hand, the subgroup corresponding to Zr is not canonical and depends very much on the
isomorphism.

A group is called free abelian group if it is isomorphic to Zr for some r (the case t = 0 in the theorem
above). In this case, elements x1, . . . , xr of G that correspond to a basis of Zr are called a basis of G;
every element of G has the form a1x1 + · · ·+ arxr for unique integers a1, . . . , ar.

Remark 24.0.5. The Chinese remainder theorem gives that if n = pa1
1 · · · pas

s , pi distinct primes, then

Z/nZ ∼= Z/pa1
1 Z× · · · × Z/pas

s Z.

Thus, one could also write an isomorphism G ∼= Zr ×∏
i Z/pbi

i Z.

We shall also prove the following corollary in greater generality next semester.

Corollary 24.0.6. Let G,H be two free abelian groups of rank r. Let f : H −→ G be a homomorphism
such that G/f(H) is a finite group. There are bases x1, . . . , xr of G and y1, . . . , yr of H and integers
1 ≤ n1| . . . |nr such that f(yi) = nixi.

Example 24.0.7. Let G be a finite abelian p group, |G| = pn. Then G ∼= Z/pa1
1 Z × · · · × Z/pas

s Z for
unique ai satisfying 1 ≤ a1 ≤ · · · ≤ as and a1 + · · ·+ as = n. It follows that the number of isomorphism
groups of finite abelian groups of order pn is p(n) (the partition function of n).

25. Semi-direct products

Given two groups B,N we have formed their direct product G = N × B. Identifying B,N with their
images {1}×B, N ×{1} in G, we find that: (i) G = NB, (ii) NCG,BCG, (iii) N ∩B = {1}. Conversely,
one can easily prove that if G is a group with subgroups B, N such that: (i) G = NB, (ii) NCG,BCG,
(iii) N ∩B = {1}, then G ∼= N ×B. The definition of a semi-direct product relaxes the conditions a little.

Definition 25.0.8. Let G be a group and let B, N be subgroups of G such that: (i) G = NB; (ii)
N ∩B = {1}; (iii) NCG. Then we say that G is a semi-direct product of N and B.

Let N be any group. Let Aut(N) be the set of automorphisms of the group N . It is a group in its own
right under composition of functions.

Let B be another group and φ : B −→ Aut(N), b 7→ φb be a homomorphism (so φb1b2 = φb1 ◦ φb2).
Define a group

G = N oφ B

as follows: as a set G = N ×B, but the group law is defined as

(n1, b1)(n2, b2) = (n1 · φb1(n2), b1b2).
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We check associativity:

[(n1, b1)(n2, b2)](n3, b3) = (n1 · φb1(n2), b1b2)(n3, b3)

= (n1 · φb1(n2) · φb1b2(n3), b1b2b3)

= (n1 · φb1(n2 · φb2(n3)), b1b2b3)

= (n1, b1)(n2 · φb2(n3), b2b3)

= (n1, b1)[(n2, b2)(n3, b3)].

The identity is clearly (1N , 1B). The inverse of (n2, b2) is (φb−1
2

(n−1
2 ), b−1

2 ). Thus G is a group. The two
injections

N −→ G, n 7→ (n, 1); B −→ G, b 7→ (1, b),
are group homomorphisms. We identify N and B with their images in G. We claim that G is a semi-direct
product of N and B.

Indeed, clearly the first two properties of the definition hold. It remains to check that N is normal and
it’s enough to verify that B ⊂ NG(N). According to the calculation above:

(1, b)(n, 1)(1, b−1) = (φb(n), 1).

We now claim that every semi-direct product is obtained this way: Let G be a semi-direct product of N
and B. Let φb : N −→ N be the map n 7→ bnb−1. This is an automorphism of N and the map

φ : B −→ Aut(N)

is a group homomorphism. We claim that N oφ B ∼= G. Indeed, define a map

(n, b) 7→ nb.

It follows from the definition that the map is surjective. It is also bijective since nb = 1 implies that
n = b−1 ∈ N ∩ B hence n = 1. It remains to check that this is a group homomorphism, but (n1 ·
φb1(n2), b1b2) 7→ n1φb1(n2)b1b2 = n1b1n2b

−1
1 b1b2 = (n1b1)(n2b2).

Proposition 25.0.9. A semi-direct product N oφ B is the direct product N × B if and only if φ :
B −→ Aut(N) is the trivial homomorphism.

Proof. Indeed, that happens iff for all (n1, b1), (n2, b2) we have (n1φb1(n2), b1b2) = (n1n2, b1b2). That
is, iff for all b1, n2 we have φb1(n2) = n2, which implies φb1 = id for all b1. That is, φ is the trivial
homomorphism. ¤

Example 25.0.10. The Dihedral group D2n is a semi-direct product. Take N = 〈x〉 ∼= Z/nZ and
B = 〈y〉 ∼= Z/2Z. Then D2n

∼= Z/nZ oφ Z/2Z with φ1 = −1.

25.1. Application to groups of order pq. We have seen in § 23.1.5 that if p < q and p 6 |(q − 1) then
every group of order pq is abelian. Assume therefore that p|(q − 1).

Proposition 25.1.1. If p|(q − 1) there is a unique non-abelian group, up to isomorphism, of order pq.

Proof. Let G be a non-abelian group of order pq. We have seen that in every such group G the q-Sylow
subgroup Q is normal. Let P be any p-Sylow subgroup. Then P ∩ Q = {1} and G = QP . Thus, G is a
semi-direct product of Q and P .

It is thus enough to show that there is a non-abelian semi-direct product and that any two such products
are isomorphic. We may consider the case Q = Z/qZ, P = Z/pZ.

Lemma 25.1.2. Aut(Q) = (Z/qZ)×.

Proof. Since Q is cyclic any group homomorphism f : Q −→ H is determined by its value on a generator,
say 1. Conversely, if h ∈ H is of order dividing q then there is such a group homomorphism with f(1) = h.
Take H = Q. The image of f is the cyclic subgroup 〈h〉 and thus f is surjective (equivalently, bijective)
iff h is a generator. Thus, any element h ∈ (Z/qZ)× determines an automorphism fh of Q by a 7→ ah.
Note that fh(fg)(a) = fh(ag) = agh = fhg(a) and so the association h ↔ fh is a group isomorphism
(Z/qZ)× ∼= Aut(Q). ¤
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Since (Z/qZ)× is a cyclic group of order q−1 (Corollary 5.0.15), and since p|(q−1), there is an element
h of exact order p in (Z/qZ)×. Let φ be the homomorphism determined by φ1 = fh and let G = Qoφ P .
We claim that G is not abelian.

(n, 0)(0, b) = (n, b), (0, b)(n, 0) = (φb(n), b).

The two are always equal only if φb(n) = n for all b and n, i.e., φb = 1 for all b, but choosing b = 1 we get
φ1 = h and thus a contradiction.

We now show that G is unique up to isomorphism. If H is another such semi-direct product then
H = Z/qZ oψ Z/pZ, where ψ1 is an element of order p (if it is the identity H is abelian) and thus
ψ1 = φr

1 = φr for some r prime to p.
Define a map

Z/qZ oψ Z/pZ −→ Z/qZ oφ Z/pZ, (n, b) 7→ (n, rb).

This function is easily checked to be injective, hence bijective. We check it is a group homomorphism:
In G we have (n1, rb1)(n2, rb2) = (n1 + φrb1(n2), r(b1 + b2)) = (n1 + ψb1(n2), r(b1 + b2)) which is the

image of (n1 + ψb1(n2), b1 + b2), the product (n1, b1)(n2, b2) in H. ¤

Example 25.1.3. Is there a non-abelian group of order 165 containing Z/55Z?
In such a group G, the subgroup Z/55Z must be normal (its index is the minimal one dividing the

order of G). Since there is always a 3-Sylow, we conclude that G is a semi-direct product Z/55Zo Z/3Z.
This is determined by a homomorphism Z/3Z→ Aut(Z/55Z) ∼= (Z/55Z)×. The right hand side has order
ϕ(55) = 4 · 10. Thus, the homomorphism is trivial and G is a direct product. It follows that G must be
commutative.

Cases where two semi-direct products are isomorphic.
It is useful to generalize the last argument. Consider a homomorphism φ : B −→ Aut(N)
and consider the group

G = N oφ B.

Consider two automorphisms f : N → N, g : B → B. Let S be G considered as a set and
consider the self map

S −→ S, (n, b) 7→ (f(n), g(b)).

We may define a new group law on S by

(n1, b1) ? (n2, b2) = f ◦ g
�
(f−1(n1), g

−1(b1))(f
−1(n2), g

−1(b2))
�

= f ◦ g
�
(f−1(n1) · [φ(g−1(b1))](f

−1(n2)), g
−1(b1)g

−1(b2))
�

= (n1 · f([φ(g−1(b1))](f
−1(n2))), b1b2)

Clearly, S with the new group law is isomorphic as groups to G.

This suggests the following, define an action of Aut(B) × Aut(N) on Hom(B, Aut(N)) via

the embedding Aut(B) × Aut(N) −→ Aut(B) × Aut(Aut(N)). That is, g ∈ Aut(B) acts

by φ 7→ φ ◦ g and f ∈ Aut(N) acts by φ 7→ cf ◦ φ, where cf is conjugation by f . That is,

(cf ◦φ)(b) = fφ(b)f−1. Then, we see that every orbit for this action gives isomorphic groups

N oφ B. Note that the action of Aut(B) × Aut(N) on Hom(B, Aut(N)) factors through

Aut(B)×Aut(N)/Z(Aut(N)).

26. Groups of low, or simple, order

26.1. Groups of prime order. We have seen in Corollary 4.0.9 that all such groups are cyclic. By
Example 8.1.2 the unique cyclic group up to isomorphism of order p is Z/pZ.

26.2. Groups of order p2. You proved in Assignment 7 that every such group is abelian. By the structure
theorem it is either isomorphic to Z/p2Z or to Z/pZ× Z/pZ.
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26.3. Groups of order pq, p < q. This case was discussed in § 25.1 above. We summarize the results:
there is a unique abelian group of order pq. If p - (q − 1) then every group of order pq is abelian. If
p|(q − 1) there is a unique non-abelian group up to isomorphism; it can be taken as any non trivial
semi-direct product Z/pZ n Z/qZ.

27. Groups of order 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15

The results about groups of prime order and of order pq, p ≤ q allow us to determine the following
possibilities:

order abelian groups non-abelian groups

1 {1}
2 Z/2Z
3 Z/3Z
4 Z/2Z× Z/2Z, Z/4Z
5 Z/5Z
6 Z/6Z S3

7 Z/7Z
9 Z/3Z× Z/3Z, Z/9Z
10 Z/10Z D10

11 Z/11Z
13 Z/13Z
14 Z/14Z D14

15 Z/15Z

28. Groups of order 8

We know already the structure of abelian groups of order 8: Z/2Z× Z/2Z× Z/2Z, Z/2Z× Z/4Z, Z/8Z.
We also know two non-isomorphic non-abelian groups of order 8: D8, Q (in Q there are six elements of
order 4, while in D8 there are two).

We prove that every non-abelian group G of order 8 is isomorphic to either D8 or Q. Suppose that
G has a non-normal subgroup of order 2, then the kernel of the coset representation G −→ S4 is trivial.
Thus, G is a 2-Sylow subgroup of S4, but so is D8. Since all 2-Sylow subgroups are conjugate, hence
isomorphic, we conclude that G ∼= D8.

Thus, assume that G doesn’t have a non-normal subgroup of order 2. Consider the center Z(G) of G.
We claim that the center has order 2. Indeed, otherwise G/Z(G) is of order 2 hence cyclic. But G/Z(G)
is never cyclic (seen in assignments).

We now claim that Z(G) = {1, z} is the unique subgroup of G of order 2. Indeed, if {1, h} = H < G
of order 2 it must be normal by hypothesis. Then, for every g ∈ G, ghg−1 = h, i.e. h ∈ Z(G). It follows
that every element x in G apart from 1 or z has order 4, and so every such x satisfies x2 = z. Rename
z to −1 and the rest of the elements (which are of order 4 so come in pairs) are then i, i−1, j, j−1, k, k−1.
Since i2 = j2 = k2 = −1 we can write i−1 = −i, etc.

Note that the subgroup 〈i, j〉 must be equal to G and so i and j do not commute. Thus, ij 6=
1,−1, i,−i, j,−j (for example, ij = −i implies that j = (−i)2 = −1 and so commutes with i). Without
loss of generality ij = k and then ji = −k (because the only other possibility is ji = k which gives ij = ji).
We therefore get the relations (the new ones are easy consequences):

G = {±1,±i,±j,±k}, i2 = j2 = k2 = −1, ij = −ji = k.

This determines completely the multiplication table of G which is identical to that of Q. Thus, G ∼= Q.
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29. Groups of order 12

We know that the abelian groups are Z/12Z and Z/2Z×Z/6Z. We are also familiar with the groups A4

and D12. One checks that in A4 there are no elements of order 6 so these two groups are not isomorphic.
Note that in A4 the 4-Sylow subgroup is normal (it is {1, (12)(34), (13)(24), (14)(23)}), and the 3-Sylow

is not. Note that in D12 the 3-Sylow is normal (it is {1, x2, x4}, the rest are 6 reflections and the rotations
x, x3, x5).

In a non-abelian group of order 12 = 223, either the 3-Sylow is normal or the 2-Sylow is normal, but
not both (if both are, prove the group is abelian).

We conclude that each non-abelian group is the semi direct product of a group of order 4 and a group
of order 3. Indeed, one checks that A4 = (Z/2Z × Z/2Z) o Z/3Z, D12 = (Z/2Z × Z/2Z) n Z/3Z. Let
us then consider a semi-direct product Z/4Z n Z/3Z (show that every semi-direct product Z/4Z o Z/3Z
is actually a direct product and so is commutative). Here 1 ∈ Z/4Z acts on Z/3Z as multiplication by
−1. This gives a non-abelian group with a cyclic group of order 4 that is therefore not isomorphic to the
previous groups. Call it T .

The proof that these are all the non-abelian groups of order 12 is easy given the results of § 25.1. We
already know that every such group is a non-trivial semi-direct product (Z/2Z× Z/2Z)oZ/3Z, (Z/2Z×
Z/2Z)n Z/3Z or Z/4Z n Z/3Z.

A non-trivial homomorphism Z/3Z −→ Aut(Z/2Z×Z/2Z) = GL2(F2) ∼= S3 corresponds to an element
of order 3 in S3. All those elements are conjugate and by § 25.1 all these semi-direct products are
isomorphic.

A non-trivial homomorphism Z/2Z×Z/2Z −→ Aut(Z/3Z) ∼= Z/2Z is determined by its kernel which is
a subgroup of order 2 = line in the 2-dimensional vector space Z/2Z×Z/2Z over Z/2Z. The automorphism
group of Z/2Z×Z/2Z acts transitively on lines and by § 25.1 all these semi-direct products are isomorphic.

A non-trivial homomorphism Z/4Z −→ Aut(Z/3Z) ∼= Z/2Z is uniquely determined.
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Part 7. Composition series, the Jordan-Hölder theorem and solvable groups

30. Composition series

30.1. Two philosophies. In the study of finite groups one can sketch two broad philosophies:
The first one, that we may call the “Sylow philosophy” (though such was not made by Sylow, I believe),

is given a finite group to study its p-subgroups and then study how they fit together. Sylow’s theorems
guarantee that the size of p-subgroup is as big as one can hope for, guaranteeing the first step can be taken.
The theory of p-groups, the second step, is a beautiful and powerful theory, which is quite successful. I
know little about a theory that tells us how p-groups fit together.15

The second philosophy, that one may call the “Jordan-Hölder philosophy”, suggests given a group G to
find a non-trivial normal subgroup N in G and study the possibilities for G given N and G/N . The first
step then is to hope for the classification of all finite simple groups. Quite astonishingly, this is possible
and was completed towards the end of the last (20th) century.

The second step is figuring out how to create groups G from two given subgroups N and H such that
N will be a normal subgroup of G and H isomorphic to G/H. There is a lot known here. We have seen
one machinery, the semi-direct product N oH.

30.2. Composition series. Let G be a finite group. A composition series for G is a sequence of distinct
subgroups

G• := {e} = G0CG1C . . . CGt = G

(note that GiCGi+1 but we do not require that GiCG), such that Gi+1/Gi is a simple group for every
i. If the series just satisfies the normality+ distinct condition, but without requiring the quotient to be
simple, then we call it a normal series.

Given a normal series G• = {e} = G0CG1C . . . CGt = G, we say that a normal series H• = {e} =
H0CH1C . . . CHs = G is a refinement of G• if all the groups Gi appear among the groups Hj . Then, a
composition series is a normal series that cannot be refined. (The statement that we can form GiCHCGi+1

with distinct quotients is equivalent via the third isomorphism theorem with the statement that Gi+1/Gi

is not simple).
One call the quotient groups Gi/Gi−1 of a composition series, the composition factors.

31. The Jordan-Hölder theorem

Theorem 31.0.1. Let G be a finite group, G 6= {e}. Then G has a composition series. Moreover, if
{e} = G0CG1C . . . CGt = G and {e} = H0CH1C . . . CHs = G are composition series. Let gi = Gi/Gi−1

and hi = Hi/Hi−1 be the composition factors. Then s = t and there is a permutation π of {1, 2, . . . , s}
such that

gi
∼= hπ(i), ∀i.

That is, the composition factors (with their multiplicities) are uniquely determined.

The proof is not particularly difficult, but will not be covered in this course. It can be found, for example,
in the book J. Rotman/Introduction to the theory of groups.

15The class of nilpotent groups turns out to be the same as the class of groups that are a direct product of their p-Sylow
subgroups.
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32. Solvable groups

A finite group G is called Solvable (or Soluble) if it has a normal series such that the composition factors
are abelian. It is not hard to prove that G is solvable if and only if there is a composition series G• such
that the quotient groups Gi/Gi−1 are cyclic of prime order.

Example 32.0.2. (1) Every abelian group is solvable.
(2) Every p-group G is solvable. Indeed we proved that there is a normal series G = G0 ⊃ G1 ⊃ · · · ⊃

Gr = {e} such that GiCGi−1 (even GiCG but that is not needed right now) and Gi−1/Gi is of
order p, hence cyclic abelian.

(3) The group S3 is solvable. It has the series S3 ⊃ A3 ⊃ {e} with quotients isomorphic to Z/2Z and
Z/3Z.

Proposition 32.0.3. Let G be a finite group and NCG. Then G is solvable if and only if N and G/N
are solvable.

Proof. Assume that N and G/N are solvable,

G/N = H ′
0 ⊃ H ′

1 ⊃ · · · ⊃ H ′
r = {e}, N = N0 ⊃ N1 ⊃ · · · ⊃ Ns = {e},

with abelian quotients. Let Hi = π−1
N (H ′

i). Then we have a sequence of groups

G = H0 ⊃ H1 ⊃ · · · ⊃ Hr = N0 ⊃ N1 ⊃ · · · ⊃ Ns = {e}.
It follows from the third isomorphism theorem that HiCHi−1 and Hi−1/Hi

∼= H ′
i−1/H ′

i and in particular
is abelian. Thus, G is solvable.

Let G be solvable,
G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {e},

with abelian quotients. Let N be a subgroup of G. Consider the series

N = N ∩G0 ⊃ N ∩G1 . . . N ∩Gn = {e}.
We claim that N ∩GiCN ∩Gi−1 and that the quotient is abelian (it follows then that N is solvable; no
need to assume N is normal). Consider the homomorphism f : Gi−1 −→ Gi−1/Gi and its restriction

g := f |N∩Gi : N ∩Gi−1 −→ Gi−1/Gi.

By the first isomorphism theorem Ker(g) = Ker(f) ∩ (N ∩ Gi−1) = N ∩ Gi is normal in N ∩ Gi−1 and
N ∩ Gi−1/N ∩ Gi = N ∩ Gi−1/Ker(g) ∼= Im(g). Since the image of g is a subgroup of the abelian group
Gi−1/Gi, it is abelian.

Assume now that N is normal and let π := πN : G −→ G/N be the canonical map. We have a sequence
of subgroups

G/N = π(G0) ⊃ π(G1) ⊃ · · · ⊃ π(Gn) = {e}.
We claim that π(Gi)Cπ(Gi−1) and that π(Gi−1)/π(Gi) is abelian. Indeed, let x ∈ π(Gi−1), y ∈ π(Gi).
We need to prove that xyx−1 ∈ π(Gi). Choose X ∈ Gi−1, Y ∈ Gi such that π(X) = x, π(Y ) = y. Then
XY X−1 ∈ Gi, because GiCGi−1, and π(XY X−1) = xyx−1. It follows that xyx−1 ∈ π(Gi).

Consider now the induced homomorphism f : Gi−1
π−→ π(Gi−1) −→ π(Gi−1)/π(Gi). It is surjective.

The kernel of f contains Gi. We can therefore argue as follows: π(Gi−1)/π(Gi) ∼= Gi−1/Ker(f) ∼=
(Gi−1/Gi)/(Ker(f)/Gi) and so π(Gi−1)/π(Gi) is a quotient of the abelian group Gi−1/Gi and hence
abelian.

¤
Example 32.0.4. Every group of order less than 60 is solvable. To show that we argue by induction on
the order of the group. Using Proposition 32.0.3, it is enough to prove that a non-abelian group of order
less than 60 is not simple.16 We know already (by results proven in class and in assignments) that groups
of order p are abelian and of order pa (a > 1), pq, pqr and p2q are not simple. The numbers less than
60 not of this form are 24, 36, 40, 48, 54, 56. We saw that groups of order 24 (in class) 36, 40, 48, 54 (in an
assignment) are not simple. It remains to show that a group G of order 56 = 23 · 7 is not simple.

Suppose that the 7-Sylow of G is not normal. Then there are 8 7-Sylow subgroups. These already
account for a set S consisting of 1 + (7 − 1) × 8 = 49 distinct elements of G. If P is a 2-Sylow subgroup
then P ∩ S = {e} and it follows that P = G \ S ∪ {e}. Since this holds for any 2-Sylow subgroup, we
conclude that P is the unique 2-Sylow subgroup and hence normal.

16Note that A5 is a simple non-abelian group of order 60 and hence non-solvable.
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The motivation for the study of solvable groups comes from Galois theory. Let f(x) = xn+an1x
n−1+· · ·+a0

be an irreducible polynomial with rational coefficients. In Galois theory one associates to f a finite group
Gf ⊆ Sn, called the Galois group of f . One of Galois’s main achievements is to prove that one can solve f
in radicals (meaning, express the solutions of f using operations as taking roots, adding and multiplying)
if and on if Gf is a solvable group.

It follows that there are formulas in radicals to solve equations of degree ≤ 4 (every group that can
possibly arise as Gf has order less than 60, hence is solvable). On the other hand, one can produce easily
an equation f of degree 5 such that Gf = S5, hence is not solvable.
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Part 8. Rings

33. Basic definitions

Definition 33.0.5. A ring R is an abelian group together with a multiplication map,

R×R −→ R, (x, y) 7→ xy,

and an element 1 ∈ R, such that the following holds:
(1) (Associativity) (xy)z = x(yz) for all x, y, z ∈ R.
(2) (Distributivity) x(y + z) = xy + xz and (x + y)z = xz + yz for all x, y, z ∈ R.
(3) (Identity) 1x = x1 = x for all x ∈ R.

Note that we insist on R having a (specified) identity element 1. In that our conventions differ from
Dummit and Foote’s.

Two formal and easy consequences of the definition are:
(1) 0x = x0 = 0;
(2) (−1)x = −x = x(−1).

A ring is called commutative if xy = yx for all x, y ∈ R. A non-zero element x ∈ R is called a zero divisor
if for some non-zero element y we have xy = 0 or yx = 0. A non zero commutative ring with no zero
divisors if called an integral domain.

An element x ∈ R is called a unit if ∃y ∈ R such that xy = yx = 1. The units form a group under
multiplication denoted R×.

Example 33.0.6. Let k be a field and V a vector space over k. One easily verifies that the collection
of linear maps from V to itself, End(V ), is a ring, where multiplication is composition of linear maps. If
V has finite dimension then if x, y ∈ End(V ) and xy = 1 then also yx = 1 and so x is a unit. However,
suppose that V = {(a1, a2, . . . ) : ai ∈ k} and x is the linear map (a1, a2, a3, . . . ) 7→ (a2, a3, . . . ). Then
x is not injective and so there is no ysuch that yx = 1. On the other hand, if y is the linear map
(a1, a2, a3, . . . ) 7→ (0, a1, a2, . . . ) then xy = 1. This example explains why we insist on xy = yx = 1 in the
definition of a unit.

A non zero ring R is called a division ring (or a skew field) if R× = R−{0}, i.e., every non-zero element
is a unit. If R is also commutative then R is called a field.

A subset I ⊆ R is called a two-sided ideal of R (or simply, an ideal of R) , denoted ICR, if I is a
subgroup and for all r ∈ R we have both inclusions

Ir ⊆ I, rI ⊆ I.

A left (resp. right) ideal is defined the same only that one requires just rI ⊆ I (resp. Ir ⊆ I).

Proposition 33.0.7. Let R be a ring and ICR a two sided ideal. The quotient group R/I has a canonical
ring structure given by

(r + I)(s + I) = rs + I,

with identity element 1 + I.

Proof. We first check that multiplication is well defined. Any two other representatives for the cosets
are of the form r + i1, s + i2 for i1, i2 ∈ I. Then (r + i1 + I)(s + i2 + I) is equal by definition to
(r + i1)(s + i2) + I = rs + i1s + ri2 + i1i2 + I = rs + I, using that I is an ideal.

The rest of the axioms follow mechanically from the fact that they hold in R. For example, letting
r = r + I, we have

r(x + y) = r · x + y

= r(x + y)

= rx + ry

= rx + ry

= r · x + r · y.

¤
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34. Key Examples of Rings

34.1. The zero ring. This is the ring R = {0}. Note that in this ring 1 = 0. This is the case excluded
when defining integral domains, fields or division rings. Note that to say that R is a non-zero ring (i.e., R
is not the zero ring) is equivalent to saying that 1 6= 0 in R.

34.2. The integers and the integers modulo n. The primal example is the integers

Z = {. . . ,−2,−1, 0, 1, 2, 3, . . . }
with the usual addition and multiplication. This is an integral domain and Z× = {±1}.

If R is any commutative ring and r ∈ R we can define (r) = Rr = rR = {ra : a ∈ R}.
Lemma 34.2.1. The set (r) is an ideal, called a principal ideal.

Proof. We first check it is a subgroup. Indeed, 0 = 0r ∈ Rr, if ar, br ∈ Rr then ar + br = (a + b)r is in Rr
and −(ar) = −1(ar) = (−1 · a)r = (−a)r ∈ Rr.

Next, let ar ∈ Rr and b ∈ R then b(ar) = (ba)r ∈ Rr and (ar)b = abr ∈ Rr (here we use the
commutativity of R in an essential way). Thus, Rr is an ideal. ¤

As an application, we find the ideals (n) = Zn = {. . . ,−2n,−n, 0, n, 2n, 3n, . . . } of Z. One can prove
that every ideal of Z has such a form. This is an example of PID, as we shall see later.

Using Proposition 33.0.7 we find the rings

Z/(n) = Z/nZ = {0, 1, . . . , n− 1}
(already familiar to us as abelian groups), where we let i = i + nZ. Note that this is a commutative ring
with n elements. If n is not prime, say n = ab, then ab = n = 0 and we find that Z/nZ has zero divisors.
If, on the other hand, n = p is prime Z/pZ doesn’t have zero divisors because ab = 0 implies that p|ab
and so, w.l.o.g., p|a, giving a = 0. It follows from the next proposition that Z/pZ is a field.

Proposition 34.2.2. Let R be an integral domain with finitely many elements then R is a field.

Proof. Let a ∈ R be a non zero element. The map R −→ R, x 7→ ax is injective: ax = ay ⇒ a(x − y) =
0 ⇒ x = y. Since R is a finite set, the map is also surjective and so there is an x such that ax = 1. ¤

The units of Z/nZ are Z/nZ× = {a : 1 ≤ a < n, (a, n) = 1}. This is a set familiar to us; recall that its
cardinality is denoted ϕ(n).

34.3. Matrices over R. Let R be a commutative ring. Then Mn(R) denote the n×n matrices with entries
in R under matrix addition and multiplication. This is a ring whose units are denoted GLn(R); a matrix is
invertible in R if and only if its determinant belongs to R×. Indeed, the usual determinant properties show
that for any commutative ring if AB = I then det(A) · det(B) = 1 and hence det(B) ∈ R×. Conversely,
we have A · adj(A) = det(A) · I and so, if det(A) ∈ R× we have an inverse: A−1 = det(A)−1adj(A).

If n > 1 and R is not the zero ring, it is in a non-commutative ring and has zero divisors. Indeed

( 0 1
0 0 )2 = ( 0 0

0 0 ) ,

and
( 0 0

1 0 ) ( 0 1
0 0 ) = ( 0 0

0 1 ) , ( 0 1
0 0 ) ( 0 0

1 0 ) = ( 1 0
0 0 ) .
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34.4. Polynomial and power series rings. Let R be a commutative ring and x a formal symbol. The
ring of polynomials over R, R[x], is the expressions of the form a0 + a1x + · · · + anxn, ai ∈ R (where n
may be different for each expression). We allow zero coefficients; we may therefore define addition by

n∑

i=0

aix
i +

n∑

i=0

bix
i =

n∑

i=0

(ai + bi)xi.

Multiplication is defined by

(
n∑

i=0

aix
i)(

m∑

i=0

bix
i) =

m+n∑

i=0

(
i∑

j=0

ajbi−j)xi.

In general, due to zero divisors, there is no elegant description of the units of this ring. However,

Proposition 34.4.1. Let R be an integral domain. The units of R[x] are R×.

Proof. Suppose that
∑n

i=0 aix
i is a unit, an 6= 0, and

∑m
i=0 bix

i is the inverse and am 6= 0. The coefficient
of xn+m is anbm, which is not zero because R is an integral domain. Thus, we must have n + m = 0 and
so n = m = 0. That is,

∑n
i=0 aix

i = a0,
∑m

i=0 bix
i = b0, and a0b0 = 1; that is a0 ∈ R×. ¤

We may define two related rings: the ring R[[x]] of Taylor series, whose general element is
∑∞

i=0 aix
i,

ai ∈ R, and the ring R((x)) of Laurent series, whose general element is
∑∞

i=N aix
i, ai ∈ R, where N is an

integer that depends on the element and may be negative. We have

R[x] ⊂ R[[x]] ⊂ R((x)).

Addition and multiplication are defined by the same formulas. We have

Proposition 34.4.2. The units of R[[x]] are {∑∞
i=0 aix

i : a0 ∈ R×}. The ring R((x)) is a field; every
non-zero element is a unit.

34.5. Hamilton’s quaternions. Recall the quaternion group of 8 elements:
{± ( 1 0

0 1 ) , ± (
i 0
0 −i

)
, ± (

0 1
−1 0

)
, ± ( 0 i

i 0 )
} ⊆ M2(C).

We denoted these elements, respectively, ±1,±i,±j,±k. Let F ⊆ R be a field, e.g., F = Q,R. The
quaternion algebra over F is the set

{a + bi + cj + dk : a, b, c, d ∈ F},
with matrix multiplication and addition. Namely, the matrices

{(
a+bi c+di
−c+di a−bi

)
: a, b, c, d ∈ F}

=
{(

a+bi c+di

−(c+di) a+bi

)
: a, b, c, d ∈ F

}

=
{(

A B
−B A

)
: A = a + bi, B = c + di, a, b, c, d ∈ F

}

(
=

if F=R

{(
A B
−B A

)
: A,B ∈ C

})

Definition 34.5.1. Let R be a ring. A subset R1 ⊆ R is called a subring if it is a subgroup of R, closed
under multiplication and 1 ∈ R1.

It follows immediately that a subring is a ring in its own right.

Proposition 34.5.2. The quaternions over F, denoted HF, are a subring of M2(C). Moreover, they form
a non-commutative division ring.

Proof. We note that if z1 = a1 + b1i, z2 = a2 + b2i, where a1, a2, b1, b2 ∈ F – we say that zi ∈ F[i] – then
z1 +z2, z1z2, z1 are also in F[i]. Using the usual properties of conjugation of complex numbers we find that

(
A B
−B A

)
+

(
A′ B′

−B′ A′

)
=

(
A+A′ B+B′

−(B+B′) A+A′

)
,

which shows closure under addition. Also 0 = ( 0 0
0 0 ) =

(
0 0
−0 0

)
is in HF and −

(
A B
−B A

)
=

(
−A −B

B −A

)
=(

−A −B

−−B −A

)
, which shows closure under additive inverse. Thus, HF is a subgroup of M2(C).
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Note that 1 = ( 1 0
0 1 ) =

(
1 0
−0 1

)
is in HF and

(
A B
−B A

) (
C D
−D C

)
=

(
AC−BD AD+BC

−(AD+BC) AC−BD

)
.

Hence, HF is closed under multiplication too.
Non-commutativity is familiar to us: ij = −ji et cetera. To show HF is a division ring, note that if M =(
A B
−B A

)
then det(M) = |A|2 + |B|2 and so if M 6= 0 then det(M) 6= 0. Now, M−1 = 1

|A|2+|B|2
(

A −B

B A

)
,

which is again an element of HF. ¤

34.6. The ring of quotients. The ring of quotients is a general construction that allows embedding a
commutative integral domain in a field; moreover, that field is the smallest possible. A case to keep in
mind is the ring Z and the field Q. If Z ⊂ F and F is a field, then for every non-zero n ∈ Z and m ∈ Z
we have the element m× n−1 in F. In this sense Q ⊆ F. This discussion also provides a clue as to how to
construct the field of quotients.

Let R be a commutative integral domain. Define a relation on R× (R− {0}) by

(34.1) (a, b) ∼ (c, d) if ad− bc = 0.

Theorem 34.6.1. The relation (34.1) is an equivalence relation. One denotes the equivalence classes by
Q(R). The operations

(a, b) + (c, d) = (ad + bc, bd), (a, b)(c, d) = (ac, bd),

are well defined. Under these operations Q(R) is a field. The map R → Q(R), r 7→ (r, 1) is injective and
R may be viewed as a subring of Q(R).

Proof. Straight from the definition we get that (a, b) ∼ (a, b) and that if (a, b) ∼ (c, d) then (c, d) ∼ (a, b).
Suppose that (a, b) ∼ (c, d) and (c, d) ∼ (e, f). Then d(af − be) = (ad − bc)f + (cf − de)b = 0. Since
d 6= 0, and R is an integral domain, we have that af − be = 0 and so (a, b) ∼ (e, f).

We denote from now on a pair (a, b) by a
b . Then (a, b) ∼ (c, d), that is a

b ∼ c
d , if ad − bc = 0. The

addition and multiplication rules are familiar:

a

b
+

c

d
=

ad + bc

bd
,

a

b
· c

d
=

ac

bd
.

We verify that they are well defined. We need to show that if a
b ∼ a1

b1
, c

d ∼ c1
d1

, then ad+bc
bd ∼ a1d1+b1c1

b1d1

and ac
bd ∼ a1c1

b1d1
. This amounts to the identities (ad + bc)(b1d1) = (ab1)dd1 + bb1(cd1) = a1bdd1 + bb1c1d =

(a1d1 + b1c1)(bd) and (ac)(b1d1) = (ab1)(cd1) = a1bc1d = (a1c1)(bd).
One now checks that the operations are commutative, associative and distributive. The verification is

formal and straightforward. For example:
(

a
b + c

d

)
e
f = ad+bc

bd · e
f = ade+bce

bdf and a
b · e

f + c
d · e

f = ae
bf + ec

df =
aedf+cebf

bdff ∼ ade+bce
bdf .

The zero element is the equivalence class of 0
1 (it consists of the elements 0

a , a ∈ R), and the identity
element is the equivalence class of 1

1 (it consists of the elements a
a , a ∈ R, a 6= 0) . The additive inverse of

a
b is −a

b . Indeed a
b + −a

b = ab−ab
b2 = 0

b2 ∼ 0
1 . It follows that Q(R) is a commutative ring.

Finally, if a
b 6= 0 then a 6= 0 and so b

a is defined. We have a
b · b

a = ab
ab ∼ 1

1 = 1. Thus, Q(R) is a field. ¤

Example 34.6.2. We have Q(Z) = Q and for any field F we have Q(F [x]) = F (x). Also, for any
commutative integral domain R we have Q(R[x]) = Q(R)(x). In section 35 we shall see that, in a precise
sense, if R is a field then R = Q(R).

35. Ring homomorphisms and the isomorphism theorems

Definition 35.0.3. A ring homomorphism f : R → S is a function satisfying: (i) f(r1+r2) = f(r1)+f(r2);
(ii) f(r1r2) = f(r1)f(r2) and (iii) f(1R) = 1S .
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Example 35.0.4. Let ICR be a two sided ideal. The canonical map

πR : R −→ R/I, πI(a) = a + I,

is a ring homomorphism. Indeed, this is just (a + I) + (b + I) = a + b + I, (a + I)(b + I) = ab + I, and
1 + I being the identity of R/I. We see that if we want πI to be a ring homomorphism this forces the
definition of addition and multiplication on the cosets R/I.

Theorem 35.0.5. Let f : R −→ S be a ring homomorphism. Then J := Ker(f) is a two sided ideal of R
called the kernel of f . If I is a two sided ideal of R such that I ⊆ J there is a unique ring homomorphism
f ′ : R/I −→ S such that the following diagram is commutative:

R
f //

πI !!B
BB

BB
BB

B S

R/I

f ′

>>||||||||

.

The kernel of f ′ is J/I.

Context: Two sided ideals are in analogy to normal subgroups. We can take quotients by such ideals. If
f : R → S is a ring homomorphism, KCS then f−1(K)CR. If f is surjective and KCR then f(K)CS.
In particular, it follows that J/I = πI(J) is an ideal of R/I (though this also follows from the first part of
the Theorem applied to f ′).

Proof. We already know that Ker(f) is a subgroup of R. If r ∈ R and a ∈ Ker(f) then f(ra) = f(r)f(a) =
f(r) · 0 = 0 and likewise f(ar) = 0. Thus, Ker(f) is an ideal of R.

Define f ′ : R → S by f ′(r + I) = f(r). This is well defined: if i ∈ I then, because I ⊆ Ker(f),
f ′(r + i + I) = f(r + i) = f(r) + f(i) = f(r). It follows immediately that f ′ is a ring homomorphism. For
example, f ′((a + I)(b + I)) = f ′(ab + I) = f(ab) = f(a)f(b) = f ′(a + I) f ′(b + I).

Note that f ′(πI(a)) = f ′(a + I) = f(a) so f ′ ◦ πI = f . Moreover, f ′(a + I) = 0 iff f(a) = 0. Thus,
f ′(a + I) = 0 iff a ∈ J , and it follows that Ker(f ′) = J/I.

Finally, f ′ is unique. Suppose that f ′′ : R/I → S also satisfies f ′′ ◦πI = f then f ′′(a+I) = f ′′(πI(a)) =
f(a) = f ′(a + I) and so f ′ = f ′′. ¤

Corollary 35.0.6. If f is surjective and I = J we conclude that f ′ : R/Ker(f) → S is an isomorphism,
R/Ker(f) ∼= S.

Corollary 35.0.7. If I ⊂ J are two sided ideals of R then

(R/I)/(J/I) ∼= R/J.

Proof. Apply the Theorem to the homomorphism πJ : R → R/J . We get

R
πJ //

πI ÃÃA
AA

AA
AA

A R/J

R/I

f ′

<<yyyyyyyy

.

We have Ker(f ′) = J/I. By the previous Corollary, (R/I)/Ker(f ′) = (R/I)/(J/I) ∼= R/J . ¤

Remark 35.0.8. The only ideals of a division ring R (e.g., a field) are 0 and R. Thus, if R is a division
ring, S is not the zero ring, and f : R → S is a ring homomorphism then f is injective. In particular, any
ring homomorphism between fields is injective.

Proposition 35.0.9. Let f : R → S be a surjective ring homomorphism. There is a bijection between
ideals of R containing the kernel of f and ideals of S, given by I 7→ f(I) (with inverse J 7→ f−1(J)).

I leave a detailed proof to you. Note that we already know such a bijection exists on the level of
subgroups. Thus, the only point to check is that it takes ideals to ideals, which is quite straight forward.
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35.1. The universal property of the ring of quotients.

Theorem 35.1.1. Let R be a commutative integral domain. There is a natural injective ring homomor-
phism

R −→ Q(R), r 7→ (r, 1) =
r

1
.

Every element of R is invertible in Q(R). If F is a field and j : R → F is an injective ring homomorphism
then there is a unique ring homomorphism J : Q(R) → F rendering the following diagram commutative:

R //

j
!!DD

DD
DD

DD
D Q(R)

J

²²
F

Proof. It follows straight from the definitions that r 7→ r
1 is a ring homomorphism. It is injective since

r
1 = 0 iff r = 0. We may thus view R as a subring of Q(R) as we shall usually do. If r ∈ R is not zero
then r · 1

r (more precisely, r
1 · 1

r ) is just 1 = r
r . Thus, every non-zero element of R is invertible in Q(R).

Given j, define J by J( r
s ) = j(r)j(s)−1. This is well defined: First, if j(s) 6= 0 then j(s)−1 exists and,

second, if r
s = r′

s′ (thus rs′ = r′s) then J( r
s ) = j(r)j(s)−1 = j(r)j(s′)j(s)−1j(s′)−1 = j(rs′)j(s)−1j(s′)−1 =

j(r′s)j(s)−1j(s′)−1 = j(r′)j(s)j(s)−1j(s′)−1 = j(r′)j(s′)−1 = J( r′
s′ ).

It is easy to verify that J is a homomorphism and of course j(r) = J( r
1 ). ¤

35.2. A useful lemma.

Lemma 35.2.1. Let R, S be commutative rings. Let f : R → S be a ring homomorphism. Let s ∈ S be
any element. There exists a unique ring homomorphism,

F : R[x] −→ S,

such that F (r) = f(r) for r ∈ R and F (x) = s.

Proof. Define
F (

∑
aix

i) =
∑

f(ai)si.

By definition, F (r) = f(r) for r ∈ R and F (x) = s. It is easy to check that F is a ring homomorphism. ¤
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From now on, all rings are assumed to be commutative

36. More on ideals

Here are some easy properties of ideals:
• If {Iα : α ∈ A} are ideals then so is ∩α∈AIα.
• If I, J are ideals then I + J = {i + j : i ∈ I, j ∈ J} is an ideal.
• If I, J are ideals then IJ , defined as ∩ KCR

K⊇{ij:i∈I,j∈J}
K, is an ideal. It is the minimal ideal of R

containing the set {ij : i ∈ I, j ∈ J}. Note that IJ ⊆ I ∩ J ; an equality does not hold in general.
For example, take I = J = 2Z in the ring Z.

• Let A be any subset of R. The ideal generated by A is defined to be ∩KCR
K⊇A

K and is denoted (A)

or 〈A〉. For example, if A = {ij : i ∈ I, j ∈ J} then 〈A〉 is the ideal IJ . A very important case is
when A contains one element, A = {a}, then (a) is Ra = aR. A principal ideal is such an ideal,
namely, of the form (a) for some a ∈ R.

Lemma 36.0.2. We have 〈A〉 = {∑N
i=1 riai : ri ∈ R, ai ∈ A,N ≥ 0} (by definition, the empty

sum is equal to the zero element of R).

Proof. Certainly any ideal containing A contains the right hand side. Hence, it is enough to prove
that the r.h.s. is an ideal. Indeed, given two finite sums we may assume that they involve the
same elements ai ∈ A by adding zero coefficients ri = 0. Then

∑
riai +

∑
siai =

∑
(ri + si)ai

and r(
∑

riai) =
∑

(rri)ai and we are done. ¤
Example 36.0.3. In Z every ideal is principal, equal to (n) for some n ∈ Z. The same holds in the ring
Z[i] of Gaussian integers and in the ring of polynomials F[x] over a field F. This will follow from the fact
that the rings Z,Z[i],F[x] are all Euclidean.

In the ring Z[
√−6] the ideal (2,

√−6) is not principal. In the ring Q[x, y] (polynomials in two variables
with rational coefficients) the ideal (x, y) is not principal.

Definition 36.0.4. An ideal ICR is called prime if I 6= R and

ab ∈ I ⇒ a ∈ I or b ∈ I.

An ideal ICR is called maximal if I 6= R and if J is an ideal containing I then J = I or J = R.

Proposition 36.0.5. The following holds:
(1) I is prime ⇔ R/I is an integral domain.
(2) I is maximal ⇔ R/I is a field.
(3) I is maximal ⇒ I is prime.
(4) Every ideal of R is contained in a maximal ideal.

Proof. (1) I is prime iff I 6= R and {ab ∈ I ⇒ a ∈ I or b ∈ I}, i.e., iff R/I is not the zero ring and
ab = 0 ⇒ a = 0 or b = 0 (where a = a + I, etc.). That is, I is prime iff R/I is an integral domain.

(2) Suppose that I is maximal. Let a 6∈ I then (I, a) = I + (a) = R so 1 = ri + sa for some
r, s ∈ R, i ∈ I, which gives 1 = s · a. Since any non zero element of R/I is of the form a for some
a 6∈ I we conclude that every non-zero element of R/I is invertible and thus R/I is a field.

Suppose that R/I is a field. Let J ⊇ I be an ideal. Then J/I is an ideal of R/I and so is either
the zero ideal or equal to R/I. It follows that J = I or J = R. Thus, I is a maximal ideal.

(3) If I is maximal R/I is a field, hence an integral domain and therefore I is prime.
(4) Let S be a poset – a partially ordered set. Namely, there is a relation 2 defined on S, which

is transitive, reflexive and if x 2 y, y 2 x then x = y. A chain in S is a subset S0 such that if
x, y ∈ S0 then either x 2 y or y 2 x. A subset S0 has a supremum if there is an element s ∈ S
such that for all s0 ∈ S0 we have s0 2 s and if t ∈ S and for all s0 ∈ S0 we have s0 2 t then s 2 t.
Zorn’s Lemma. Let S be a poset in which any chain has a supremum. Then S has a maximal
element, namely, an element z ∈ S such that if s ∈ S and z 2 s then z = s.
The proof of this lemma is beyond the scope of this course. It is known to be equivalent to the
Axiom of Choice of set theory. We apply the lemma as follows. Let S be the set of all ideals of R
except the ideal R itself. This is a poset: I 2 J if I ⊆ J . Any chain of ideals {Iα : α ∈ A} has a
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supremum ∪α∈AIα (this is indeed an ideal!). Hence ,by Zorn’s lemma S, has a maximal element
M . The construction gives that M is a maximal ideal of R.

¤

Example 36.0.6. When is a principal ideal (r) prime? The first condition is that (r) 6= R. That is, r is
not a unit. Secondly, if ab ∈ (r), that is ab = rc1 for some c1 ∈ R then a ∈ (r) or b ∈ (r), meaning a = rc2

or b = rc3 for some ci ∈ R.
Let us say, for a general commutative ring R, that f |g in R if g = fc for some c ∈ R. We see that in

this terminology, (r) is a prime ideal if r is not a unit and r|ab ⇒ r|a or r|b. This is a property of prime
numbers and motivates the terminology “prime” (but we also require r 6= 0).

In particular, the prime ideals of Z are precisely the ideals of the form (p), where p is a prime number.
The ideal (1 + i) of Z[i] is maximal: Z[i]/(1 + i) ∼= (Z[x]/(x2 + 1))/((1 + x, x2 + 1)/(x2 + 1)) ∼= Z[x]/(x2 +
1, 1 + x) = Z[x]/(1 + x, 2) ∼= Z/2Z[x]/(1 + x) ∼= Z/2Z.

The ideal (x2 − y2) of Q[x, y] is not prime. We have (x + y)(x− y) = x2 − y2 and x + y 6∈ (x2 − y2).

37. The Chinese Remainder Theorem

Let R be a commutative ring. Two ideals I, J of R are called co-prime if I + J = R; equivalently, we
have 1 = i + j for some i ∈ I, j ∈ J .

Theorem 37.0.7. (The Chinese Remainder Theorem) Let R be a commutative ring and A1, . . . , Ak ideals
of R, co-prime in pairs (Ai + Aj = R for i 6= j). Then,

R/(A1 · · ·Ak) ∼= R/A1 × · · · ×R/Ak.

Proof. We define a map

f : R −→ R/A1 ×R/A2 × · · · ×R/Ak, r 7→ (r + A1, . . . , r + Ak).

This is a ring homomorphism whose kernel is A1 ∩ A2 ∩ · · · ∩ Ak ⊇ A1A2 · · ·Ak. We need to prove that
this is actually an equality and that f is surjective. The key is the following Lemma:

Lemma 37.0.8. For every i there is an element ei ∈ R such that

ei ≡ 1 (mod Ai), ei ≡ 0 (mod Aj), ∀j 6= i.

Proof. (Lemma) Without loss of generality, i = 1. For each j = 2, 3, . . . , k write

1 = xj + yj , xj ∈ A1, yj ∈ Aj .

Then
1 = (x1 + y1)(x2 + y2) · · · (xk + yk)

= α + y2y3 . . . yk.
(37.1)

Here α is a sum of products, each involving at least one xj , so α ∈ A1. Let

e1 = 1− α.

Then e1 ≡ 1 (mod A1) and e1 = y2y3 . . . yk ≡ 0 (mod Aj) for 2 ≤ j ≤ k. ¤

We now show that f is surjective. Given (r1, r2, · · · , rk) ∈ R/A1 × R/A2 × · · · × R/Ak choose si ∈ R
such that si = si + Ai = ri. Then f(s1e1 + s2e2 + · · ·+ skek) =

∑
i sif(ei) =

∑
i(0, . . . , 0, si

i
, 0, . . . , 0)) =

(s1, s2, . . . , sk).
It remains to prove that A1A2 · · ·Ak ⊇ A1 ∩A2 ∩ · · · ∩Ak. We prove that by induction on k. For k = 1

this is clear. Consider the case k = 2. We have 1 = x2 + y2 as in Equation (37.1). Let c ∈ A1 ∩A2. Then
c = cx2 + cy2. Note that c ∈ A2, x2 ∈ A1 ⇒ cx2 ∈ A1A2 and c ∈ A1, y2 ∈ A2 ⇒ cy2 ∈ A1A2. Thus,
c ∈ A1A2.

Assume now that k > 2. Let B = A2 ∩ · · · ∩Ak. We know by induction that B = A2 · · ·Ak. Note that
A1 and B are relatively prime, because by Equation (37.1)

1 = α + y2 · · · yk, α ∈ A1, y2 · · · yk ∈ B.

Using the case k = 2 we have that A1B ⊇ A1 ∩B, i.e., A1A2 · · ·Ak ⊇ A1 ∩A2 ∩ · · · ∩Ak. ¤
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Remark 37.0.9. One may ask why is it important to prove that the kernel is A1A2 · · ·Ak and not just
A1 ∩ A2 ∩ · · · ∩ Ak. The reason is that in general it is easier to calculate the product of ideals than their
intersection. For example, if each Ai is principal, Ai = (ai), then A1A2 · · ·Ak = (a1a2 · · · ak). This formula
can be generalized. For example, if A1 = ({ai}i), A2 = ({bj}j) then A1A2 = ({aibj}i,j).

Corollary 37.0.10. Let a1, · · · , ak be relatively prime integers – that is, (ai, aj) = 1 for i 6= j. Then

Z/(a1a2 · · · ak) ∼= Z/(a1)× · · · × Z/(ak).

In particular, given residues classes bi mod ai, there is an integer b, unique up to adding multiples of
a1a2 · · · ak such that b ≡ ai (mod ai) for all i.

Example 37.0.11. Find an integer congruent to 5 mod 7 and congruent to 10 mod 13. In the notation
of the proof, we are looking for 5e1 + 10e2. Write 1 = 2 · 7 − 13 (this can be done using the Euclidean
algorithm in general). Then e1 = 1 − 2 · 7 = −13, e2 = 1 + 13 = 14. Then b = 5 · (−13) + 10 · 14 = 75
is congruent to 5 mod 7 and to 10 mod 13. Note that by modifying by a multiple of 7× 13 we can get a
small solution, namely −16. This is typical too.
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Part 9. Euclidean, Principal Ideal and Unique Factorization Domains

38. Euclidean domain

Definition 38.0.12. Let R be an integral domain. We say that R is Euclidean if there is a function
(called norm)

N : R −→ N = {0, 1, 2, . . . }
such that for any a, b ∈ R, b 6= 0, there are q, r ∈ R such that

a = qb + r,

with r = 0 or N(r) < N(b).

Example 38.0.13. R = Z, N(a) = |a|.
Example 38.0.14. Let F be a field. Define on R = F[x], N(f(x)) = deg(f(x)) then F[x] is Euclidean.
Indeed, write

a = aNxN + aN−1x
N−1 + · · ·+ a0, aN 6= 0

and

b = bMxM + bM−1x
M−1 + · · ·+ b0, bM 6= 0.

If N < M take q = 0 and r = a. If N ≥ M , let q = qN−MxN−M + · · · + q0, where the coefficients qi are
determined recursively by attempting to solve a = qb, i.e.,

aNxN + aN−1x
N−1 + · · ·+ a0 = (qN−MxN−M + · · ·+ q0)(bMxM + bM−1x

M−1 + · · ·+ b0).

That is, we solve recursively for the qi:

qN−MbM = aN

qN−M−1bM + qN−mbM−1 = aN−1

...

Example 38.0.15. Let R = Z[i] = {a + bi : a, b ∈ Z}. This is a subring of the complex numbers. Let

N(a + bi) = a2 + b2 = |a + bi|2.
Given two elements a + bi, c + di of R, let us write

a + bi =
a + bi

c + di
(c + di) =

(
ac + bd

c2 + d2
+
−ad + bc

c2 + d2
i

)
(c + di).

Let α = ac+bd
c2+d2 and β = −ad+bc

c2+d2 . Find integers A, B such that

|α−A| ≤ 1/2, |β −B| ≤ 1/2.

Then

a + bi = (A + Bi)(c + di) + ((α−A) + (β −B)i)(c + di).

Then q = A + Bi and r = ((α−A) + (β −B)i)(c + di). Note that q, r ∈ R. Finally,

N(r) = [(α−A)2 + (β −B)2]N(c + di) ≤ 1
2
N(c + di) < N(c + di).
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39. Principal ideal domain (PID)

Definition 39.0.16. An integral domain R in which every ideal is principal, i.e. of the form (r) = Rr = rR
for some r ∈ R, is called a principal ideal domain (PID).

Proposition 39.0.17. Every Euclidean domain is a PID.

Proof. Let ICR be an ideal. If I = {0} = (0) there is nothing to prove. Else, choose b ∈ I, b 6= 0 such that
N(b) is minimal among the norms of the non-zero elements of I. Let a ∈ I then we may write a = qb + r
with r = 0 or N(r) < N(b). However, r = a− qb ∈ I so r = 0 else we get a contradiction to the definition
of b. That is, a ∈ (b) and it follows that I = (b). ¤

39.1. Division and gcd’s. Let R be an integral domain and a, b ∈ R. We say that b divides a, b|a, if
there exists x ∈ R such that a = bx. We say that a and b are associates, a ∼ b, if a = bx and x ∈ R×.

Here are some easy consequences of the definitions:
• c|b and b|a ⇒ c|a.
• 1|a. a|1 ⇔ a ∈ R×.
• b|a and a|b ⇔ b ∼ a.
• b|a1, b|a2 ⇒ b|(a1 + a2).
• b|a ⇒ b|ac,∀c ∈ R.
• a ∼ b if and only if a|b and b|a. Being associates is an equivalence relation.

Lemma 39.1.1. b|a ⇔ (a) ⊆ (b) (“to divide is to contain”). In particular, a ∼ b ⇔ (a) = (b).

Proof. We have b|a ⇔ a = bx ⇔ a ∈ (b) ⇔ (a) ⊆ (b). ¤
A greatest common divisor (g.c.d.) of two elements a, b ∈ R is an element d ∈ R having the following

properties:
(1) d|a and d|b;
(2) If d′|a and d′|b then d′|d.

Lemma 39.1.2. A g.c.d., if it exists, is unique up to a unit. In that case, it will be denoted gcd(a, b) or,
simply, (a, b).

Proof. Assume that d is a g.c.d. of a and b. Say a = da′, b = db′. Let x ∈ R×. Then a = (dx)(x−1a′), b =
(dx)(x−1b′). Suppose that d′|a, d′|b then d = d′d′′ and so dx = d′(d′′x). It follows that dx is a g.c.d. too.

Conversely, say d and d′ are both g.c.d.’s. Then d|d′, d′|d. It follows that d ∼ d′ and so differ by a
unit. ¤

In general a g.c.d. need not exist. The following lemma provides a criterion for its existence. Note that
this criterion is not necessary but only sufficient. For example, in the ring Q[x, y] we have g.c.d.(x, y) = 1
but 〈x, y〉 is not principal.

Lemma 39.1.3. If the ideal 〈a, b〉 is principal, 〈a, b〉 = (d), then d is a g.c.d. of a, b.

Proof. If 〈a, b〉 = (d) then a ∈ (d), b ∈ (d) so d|a, d|b. If d′|a, d′|b then a, b ∈ (d′) and so 〈a, b〉 ⊆ (d′).
Hence, (d) ⊆ (d′) and so d′|d. ¤
Corollary 39.1.4. If R is a PID then any two elements of R have a g.c.d..

39.2. Calculation of g.c.d.’s – the Euclidean algorithm. Let R be a Euclidean ring. Then R is
a PID and hence any two elements a, b ∈ R have a g.c.d.. The Euclidean algorithm provides means to
calculate that g.c.d..

Theorem 39.2.1. Let a, b be elements of the Euclidean ring R. Write
a = q0b + r0

b = q1r0 + r1

r0 = q2r1 + r2

...
rn−1 = qn+1rn
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Indeed, the process always stops. Moreover rn is gcd(a, b).

Example 39.2.2. Let us calculate the g.c.d. of 1079 and 1131. We have

1131 = 1 ∗ 1079 + 52
1079 = 20 ∗ 52 + 39

52 = 1 ∗ 39 + 13
39 = 3 ∗ 13

Therefore, 13 = (1079, 1131).

Example 39.2.3. Let us calculate the g.c.d. of x3 − x and x3 + 3x2 + x in Q[x]. We have

x3 + 3x2 + x = 1 ∗ (x3 − x) + 3x2 + 2x

x3 − x = (x/3− 2/9)(3x2 + 2x)− 5x/9

3x2 + 2x = −9/5(3x + 2)(−5x/9)

It follows that gcd(x3 − x, x3 + 3x2 + x) = x.

Remark 39.2.4. Let R be a PID. Then for every a, b we have 〈a, b〉 = 〈d〉 for some d ∈ R. In the case R is
Euclidean we have a method to find d. In the general case, we do not have a method.

Note that in the case of PID we have 〈a, b〉 = 〈d〉 and so there are x, y ∈ R such that gcd(a, b) = xa+yb.
In the Euclidean case the Euclidean algorithm also gives x, y by “solving back”. An example will suffice to
clarify how to do that. Refer back to Example 39.2.2. We have 13 = (1079, 1131). Moreover, 52 = 1∗39+13
and so 13 = 52 − 39. Now, 1079 = 20 ∗ 52 + 39 and so 13 = 52 − (1079 − 20 ∗ 52) = 21 ∗ 52 − 1079. Use
now that 1131 = 1 ∗ 1079 + 52 to get that 13 = 21 ∗ (1131− 1079)− 1079 = 21 ∗ 1131− 22 ∗ 1079.

39.3. Irreducible and prime elements.

Definition 39.3.1. Let R be an integral domain. Let r be an element of R, r 6= 0 and r not a unit.
(1) The element r is called irreducible if

r = ab =⇒ r ∼ a or r ∼ b.

(2) The element r is called prime if

r|ab =⇒ r|a or r|b.
Remark 39.3.2. Note that if r, s are associates then r is irreducible (prime) if and only if s is.

Note also that r is prime if and only if (r) is a non-zero prime ideal.

Lemma 39.3.3. If r is prime then r is irreducible.

Proof. Suppose that r = ab. Then r|ab and so, without loss of generality, r|a. But a|r and so r ∼ a. ¤

Example 39.3.4. In general an irreducible element need not be prime. Consider the ring Z[
√−5]. We

have the factorization
(1 +

√−5) · (1−√−5) = 2 · 3.

I claim that all these elements are irreducible. First, the units of this ring are just ±1. Now, for example,
if 2 = (a + b

√−5)(c + d
√−5) then |2|2 = (a2 + 5b2)(c2 + 5d2). From that we see that a = ±2, b = 0 and

so 2 ∼ a. Similar arguments work for the rest.
On the other hand, none of these elements can be prime. For example, 2|(1 +

√−5) · (1 − √−5) but
clearly 2 - +

√−5. Or, if you prefer, Z[
√−5]/(2) ∼= Z/2Z[x]/(x2+5). We have (x+1)2 = x2+1 = x2+5 = 0

in this ring, which shows that we have zero divisors. Hence, (2) is not a prime ideal.

In contrast, in certain rings, such as Z, the concepts of prime and irreducible are one. The following
Proposition generalizes this.

Proposition 39.3.5. If R is a PID (e.g., if R is Euclidean) then r is prime if and only if r is irreducible.
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Proof. A prime element is always irreducible by Lemma 39.3.3. We show the converse. Let r be an
irreducible element. Suppose that (r) ⊆ BCR. Since R is a PID, we have B = (b) for some b ∈ R.
Thus, r = ab for some a ∈ R. But r is irreducible so r ∼ a (and so b ∈ R×)) of r ∼ b. We see that,
correspondingly, either B = R or B = (r). We conclude that (r) is a maximal ideal.

Since a maximal ideal is a prime ideal, it follows that (r) is a prime ideal and so r is a prime element. ¤

Corollary 39.3.6. In a PID, every prime ideal is maximal.

Proof. Every prime ideal if of the form (r), for r prime/irreducible. We saw that this implies (r) is
maximal. ¤

Corollary 39.3.7. Let F be a field. In the polynomial ring F[x] a polynomial is prime if and only if it is
irreducible. The quotient ring F[x]/(f(x)) is a field if and only if f(x) is irreducible.

Example 39.3.8. Let R be an integral domain which is not a field (e.g., R = Z or R = F[x], F a field).
Then R[y] is an integral domain that is not a PID.

Indeed, the ideal (y) is prime since R[y]/(y) ∼= R which is an integral domain. It is not a maximal ideal
since R is not a field.

40. Unique factorization domain (UFD)

Definition 40.0.9. Let R be an integral domain. R is called a unique factorization domain (UFD) if for
every r ∈ R, not zero and not a unit, the following holds:

(1) r can be written as a product of irreducible elements pi,

r = p1p2 . . . pn.

(2) If r = q1q2 . . . qm is another expression of r as a product of irreducible elements then m = n and
after re-indexing we have pi ∼ qi for all i.

Proposition 40.0.10. Let R be a UFD and r an element of R. Then r is prime if and only if r is
irreducible.

Remark 40.0.11. Recall that a PID also has this property (Prop. 39.3.5. We shall prove below that a PID
is UFD, so it all adds up!

Proof. A prime element is always irreducible (Lemma 39.3.3). Let r ∈ R be irreducible. Suppose that r|ab.
Then ab = rx. Write the irreducible decomposition of each element: a = p1p2 · · · pm, b = q1q2 · · · qm, w =
t1t2 · · · t`. Then p1p2 · · · pmq1q2 · · · qm = rt1t2 · · · t` is two expressions as product of irreducible elements.
It follows that either r ∼ pi for some i, or r ∼ qj for some j. Thus, either r|a or r|b. ¤

40.1. A PID is a UFD.

Theorem 40.1.1. Let R be a PID then R is a UFD.

We have thus the following situation

R Euclidean =⇒
:

R PID =⇒
:

R UFD

In particular, we conclude:

Corollary 40.1.2. Let F be a field then F[x] is UFD; every polynomial can be written as a product of
irreducible polynomials uniquely (up to multiplication by units = F×, and permuting the polynomials).

Example 40.1.3. A UFD need not be a PID. We shall show below that R is a UFD implies that R[x] is
a UFD. Hence, Q[x, y] is a UFD but is not a PID (the ideal (x, y) is not principal).

Example 40.1.4. A PID needs not be Euclidean. I don’t know an easy example. One can prove that
Z[ 1+

√−19
2 ] is a PID, but not Euclidean.
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Proof. The first step is to prove that if r ∈ R is not zero, or a unit, then r can be written as a product of
irreducible elements.

Suppose not, then r is not irreducible and so r = r1s1, where either r1 or s1 are not a product of
irreducible elements, without loss of generality, r1. Then r1 = r2s2, , where either r2 or s2 are not
a product of irreducible elements (and are not associates of r1), without loss of generality, r2. Then
r2 = r3s3, , where either r3 or s3 are not a product of irreducible elements (and are not associates of r2),
without loss of generality, r3. And so on.

We get a chain of division: . . . r3|r2|r1|r, where this is “true division”; any two elements are not
associates. We thus get a strictly increasing chain of ideals:

(r) ( (r1) ( (r2) ( (r3) ( . . . .

Consider then ∪∞i=1(ri). It is easy to check this is an ideal, and so, since R is a PID, of the form (g) for some
g ∈ R. But then g ∈ (ri) for some i and we get (ri) = (g). It then follows that (ri) = (ri+1) = (ri+2) = . . . .
This is a contradiction.

The second step is to prove this decomposition is unique. Say

r = p1 · · · pn = q1 · · · qm,

a product of irreducible elements and without loss of generality m ≥ n. We prove the uniqueness by
induction on n:

If n = 1 then we get a factorization of the irreducible element p1. Then either q1 or q2 · · · qm is a unit.
It must thus be the case that m = 1 and p1 = q1.

Assume the result of n − 1. Since pn|q1 · · · qm there is some i such that pn|qi (in a PID an irreducible
element is prime). Thus, since qi is irreducible, qi = pnx for some unit x. We get

p1 · · · pn−1 = (xq1)q2 · · · q̂i · · · qm.

By induction n−1 = m−1 and p1, p2, . . . , pn−1 are the same as xq1, q2, . . . , q̂i, . . . , qm up to multiplication
by units (or, what is the same, q1, q2, . . . , q̂i, . . . , qm up to multiplication by units). ¤

40.1.1. Arithmetic in UFD’s. The unique factorization property allows us to do arithmetic in a UFD much
like in Z. For instance, we can define g.c.d.’s, l.c.m.’s and such.

Proposition 40.1.5. Let R be a UFD. Let x = pα1
1 · · · pαn

n · u, y = pβ1
1 · · · pβn

n · v, where the pi are
non-associated irreducible elements, αi, βi are non-negative integers and u, v are units. Then

gcd(x, y) = ps1
1 · · · psn

n , si = min{αi, βi},
and

lcm(x, y) = pt1
1 · · · ptn

n , ti = max{αi, βi}.
The proposition follows immediately from the following result.

Lemma 40.1.6. In the notation above, z|x if and only if z = pa1
1 · · · pan

n w with ai ≤ αi for all i and w a
unit.

Proof. Clearly every such z divides x: x = pα1−a1
1 · · · pαn−an

n uw−1z. Conversely, if z|x, say x = zt then
write z and t as a product of irreducible elements. Say z = pa1

1 · · · pan
n qb1

1 · · · qbm
m w and t = p

a′1
1 · · · pa′n

n q
b′1
1 · · · qb′m

m w′,
where we allow non-negative (including zero) exponents. Thus,

pα1
1 · · · pαn

n · u = p
a1+a′1
1 · · · pan+a′n

n q
b1+b′1
1 · · · qbm+b′m

m ww′.

Unique factorization gives that each bi = b′i = 0 (or, if you prefer, m = 0) and ai + a′i = αi. ¤

40.2. Application: construction of fields. Let F be a field.

Proposition 40.2.1. Let f(x) be a monic irreducible polynomial of F[x] of degree n. The ring F[x]/(f(x))
is a field. Every element in this field can be written uniquely as the coset of a polynomial a0 + a1x + · · ·+
an−1x

n−1 with ai ∈ F. In particular, if F is a finite field of q elements then F[x]/(f(x)) has qn elements.
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Proof. Since f(x) is irreducible (f(x)) is a maximal ideal. Thus, F[x]/(f(x)) is a field. Given a polynomial
a(x) divide it with residue by f(x). We have

a(x) = q(x)f(x) + r(x),

where r(x) = a0 + a1x + · · ·+ an−1x
n−1 with ai ∈ F and the coefficients may well be all or some equal to

zero. Note that a(x) = r(x). This shows that every element has such a representation.
Now, if a0 + a1x + · · · + an−1x

n−1 = b0 + b1x + · · · + bn−1x
n−1 in F[x]/(f(x)) then a0 + a1x + · · · +

an−1x
n−1 − (b0 + b1x + · · ·+ bn−1x

n−1) belongs to the ideal f(x). But every non-zero polynomial in this
ideal has degree at least n = deg(f(x)). Thus, a0 + a1x + · · ·+ an−1x

n−1 = b0 + b1x + · · ·+ bn−1x
n−1 in

F[x]. ¤

It is known that every finite field has pn elements for some prime p and some integer n ≥ 1. To show
that for every p and n there is such field one can show that for every p and n there is an irreducible
polynomial of degree n over Z/pZ. This usually requires some clever tricks. Here we content ourselves in
proving that there is a field of p2 elements for every p.

Assume first that p 6= 2. Consider the map

(Z/pZ)× −→ (Z/pZ)×, t 7→ t2.

The kernel of this map is {±1} and, since p is odd, consists of two elements. It follows that the image is
of order (p− 1)/2. Thus, there are (p− 1)/2 + 1 elements in Z/pZ that are squares (we count now also 0)
and (p− 1)/2 that aren’t. Let t be a non-square. Then x2 − t is an irreducible polynomial.

For p = 2 we may take the polynomial x2 + x + 1.

40.3. Gauss’ Lemma.

Lemma 40.3.1. Let I be an ideal of R, a commutative ring, let IR[x] be the ideal generated by I in the
polynomial ring R[x]. Then

IR[x] = {
N∑

n=0

anxn : an ∈ I}

and
R[x]/IR[x] ∼= (R/I)[x].

Proof. By definition, IR[x] = {∑N
n=0 infn(x) : in ∈ I, fn(x) ∈ R[x]}. Clearly it contains {∑N

n=0 anxn :
an ∈ I}. On the other hand, by expanding a sum

∑N
n=0 infn(x), in ∈ I, fn(x) ∈ R[x], according to powers

of x we get the other inclusion.
Now, define a homomorphism

R[x] −→ (R/I)[x], f(x) 7→ f(x),

where if f(x) =
∑

aix
i then f(x) =

∑
aix

i (we use ai to denote the coset ai + I). The kernel is
{∑N

n=0 anxn : an = 0} = {∑N
n=0 anxn : an ∈ I} = IR[x] and the map is clearly surjective. We conclude

by the first isomorphism theorem. ¤

Lemma 40.3.2. (Gauss’ lemma) Let R be a UFD with field of fractions F , Let f(x) ∈ R[x]. If f(x) is
reducible in F [x] then f(x) is reducible in R[x]. More precisely, if f(x) = A(x)B(x) in F [x], a product of
non-constant polynomials, then f(x) = a(x)b(x) in R[x] where a(x) (resp., b(x)), is a constant multiple of
A(X) (resp., B(X)).

Remark 40.3.3. Note that the contrapositive has to be taken with care. It is not, f(x) irreducible in R[x]
implies that f(x) is irreducible in F [x]. The issue is that the units of the rings are different. For example,
2 ∈ Z is irreducible in Z ⊂ Z[x] but is not irreducible in Q ⊂ Q[x] simply because it is a unit in Q and a
unit is not an irreducible element. See Corollary 40.3.5 below for the correct converse.

Example 40.3.4. A typical application of Gauss’ lemma is the following. Let f(x) be a monic polynomial
with integer coefficients. Every rational root of f is an integer. Indeed, a root r gives a factorization f(x) =
(x− r)B(x) and hence a factorization into polynomials with integer coefficients f(x) = [s(x− r)][tB(x)],
where s, t ∈ Q. Since f is monic we must have s = ±1 and so, sr and hence r are integers.
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Proof. Suppose that f(x) = A(x)B(x) in F [x]. Since the coefficients of A,B are fractions s/t, where
s, t ∈ R, we can find a common denominator and so an equation

df(x) = A1(X)B1(X),

with 0 6= d ∈ R, A1(X), B1(X) ∈ R[x]. Note that A1, B1 are constant multiples of A,B.
If d is a unit, take a(x) = d−1A1(x), b(x) = B(x). Else,

d = p1 · · · pn,

a product of irreducible elements. Now, since p1 is irreducible it is prime and so (p1) is a prime ideal.
In the ring R/(p1)[x], which is an integral domain, we have 0 = A1(x) · B1(x) and thus, without loss of
generality, A1(x) = 0. Lemma 40.3.1 gives that each coefficient of A1(x) is divisible by p1. Hence, there
is a polynomial A2(x) ∈ R[x] such that

p2 · · · pnf(x) = A2(x)B1(x).

Continuing in such fashion, we find polynomials a(x), b(x) ∈ R[x] such that f(x) = a(x)b(x) and a, b are
constant multiples of A,B. ¤
Corollary 40.3.5. Let f(x) ∈ R[x] be a polynomial such that the g.c.d. of its coefficients is 1, e.g., f(x)
is monic. Then f(x) is irreducible in R[x] if and only if f(x) is irreducible in F [x].

Proof. One direction is Gauss’ Lemma. Suppose then that f(x) is reducible in R[x], say f(x) = a(x)b(x),
where neither is a unit in R[x]. Note that a(x) cannot be a constant, because this would imply that a(x)
divides the g.c.d. of the coefficients of f(x) and hence that g.c.d. is not 1. Thus, a(x) is also not a unit
of F [x]. The same holds for b(x) and thus f is reducible in F [x]. ¤
Example 40.3.6. It is good to keep the following example in mind. The polynomial 2x is reducible in
Z[x] but is irreducible in Q[x].

40.4. R UFD ⇒ R[x] UFD.

Theorem 40.4.1. Let R be a UFD then R[x] is a UFD.

Proof. Let f(x) ∈ R[x] and write
f = df1,

where the g.c.d. of the coefficients of f1 is 1. Note that this decomposition is unique up to a unit, namely,
up to d 7→ du, f1 7→ f1u

−1. Since d can be written as product of irreducible elements, unique up to being
associate, and since irreducible elements of R are irreducible elements of R[x], we may assume that the
g.c.d. of the coefficients of f is 1.

let F be the quotient field of R. We use the fact that F [x] is Euclidean, hence PID, hence UFD, to
write

f(x) = P1(x) · · ·Pn(x), Pi(x) ∈ F [x] irreducible.
By Gauss’ Lemma

f(x) = p1(x) · · · pn(x), pi(x) ∈ R[x],
where each pi is a multiple of Pi, in particular irreducible in F [x]. Note that the g.c.d. of the coefficients
of pi must be 1 (because of our assumption of f). Corollary 40.3.5 gives that each pi is irreducible in R[x].

The decomposition of f is unique. If

f = q1(x) · · · qm(x)

is another factorization into irreducible polynomials in R(x) then each qi has g.c.d. of its coefficients equal
to 1, hence by Corollary 40.3.5 is irreducible in F [x]. Since F [x] is a UFD, we must have, after re-indexing,
that m = n and qi ∼ pi for all i in F [x], say pi = ri

si
qi. We get an equality in R[x]: sipi = riqi. The g.c.d.

of the r.h.s. is ri and is equal to that of the l.h.s. which is si. It follows that ri ∼ si and so pi ∼ qi in
R[x]. ¤
Corollary 40.4.2. Let F be a field and x1, . . . , xn be variables. The ring of polynomials F[x1, . . . , xn] is
a UFD.


