Algebra 3 (2004-05) – Assignment 8

Instructor: Dr. Eyal Goren

Submit by Monday, November 15, 17:00 by mail-box on 10^{th} floor. Answer questions 1-4. Do not submit questions 5-6; they are additional questions for practice (and are not that hard in fact).

1). Prove that if G is a group of order 36, 40, 48, 54 then G is not a simple group.

2). Find a composition series for each groups of order 8 and for the group S_4 having cyclic groups of prime order as quotients.

3). Find a normal series with abelian quotients for the subgroup $U = \left\{ \begin{pmatrix} 1 & \dots & * \\ & 1 & \dots & * \\ & & \ddots & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \right\}$ of $\operatorname{GL}_n(\mathbb{F}_q)$.

4). Find Inn(Q), Aut(Q) and Out(Q), where Q is the quaternion group of order 8.

5). Let p be a prime and let G be a finite group of order divisible by p. Let P be a p-Sylow subgroup of G and let N be a normal subgroup of G. Prove that $P \cap N$ is a p-Sylow subgroup of N. Give a counterexample if N is not normal.

6). Let p be a prime. Let G be a finite p-group. Let V be a finite dimensional vector space over a field with q-elements \mathbb{F}_q , $q = p^a$. Prove that there is a non-zero vector $v \in V$ such that every $g \in G$ fixes v.