Algebra 3 (2004-05) – Assignment 7

Instructor: Dr. Eyal Goren

Submit by Monday, November 1, 17:00 by mail-box on 10^{th} floor. Answer question no. 5 and at least 4 other questions. Every additional question is a bonus.

1). How many elements of order 7 does a simple group of order 168 must have?

2). It is known that $GL_3(\mathbb{F}_2)$ is a simple group of order 168, and in fact is the unique one up to isomorphism. Show, at least, that none of its Sylow groups is normal.

3). Prove that a group of order 36 has a normal Sylow subgroup.

4). Prove that in a group of order 231 the center contains the 11-Sylow and that the 7-Sylow is normal.

5). Let p > 2 be a prime. Using semi-direct products construct two non-isomorphic non-abelian groups of order p^3 .

6). Let G be a group. Prove that there is a group homomorphism

$$G \longrightarrow \operatorname{Aut}(G), \qquad g \mapsto \phi_g,$$

where $\phi_g(x) = gxg^{-1}$, whose kernel is Z(G). The image of this homomorphism is denoted Inn(G) (the inner automorphisms of G). Prove that the image is a normal subgroup of Aut(g). The quotient Aut(G)/Inn(G) is denoted Out(G) and is called the outer automorphism group of G.

7). In this exercise we shall prove that $Aut(S_n) = S_n$ for n > 6. (The results holds true for n > 3 and fails for n = 6.)

- (1) Prove that an automorphism of S_n takes an element of order 2 to an element of order 2.
- (2) For $n \neq 6$ use an argument involving centralizers to show that an automorphism of S_n takes a transposition to a transposition.
- (3) Prove that every automorphism has the effect $(12) \mapsto (ab_2), (13) \mapsto (ab_3), \ldots, (1n) \mapsto (ab_n)$, for some distinct $a, b_2, \ldots, b_n \in \{1, 2, \ldots, n\}$. Conclude that $\sharp Aut(S_n) \leq n!$.
- (4) Show that for n > 6 there is an isomorphism $S_n \cong \operatorname{Aut}(S_n)$.

8). Find the number of p-Sylow subgroups of S_5 and write one such subgroup for each prime.

9). Find a *p*-Sylow subgroup of S_{2p} . Find all Sylow subgroups of D_{12} .

10). For every prime p dividing its order write an example of a p-Sylow subgroup and determine their number for the group $SL_2(\mathbb{F}_3)$.

11). Prove that a group of order pqr, p < q < r primes, is not simple.

12). Prove that a group G of order 36, 40, 48, 54 is not simple.

13). Let $G \triangleleft H$ then conjugation by elements of H induce automorphisms of G; if $h \in H$ we have $x \mapsto hxh^{-1}$ is an automorphism τ of G. In that case we say τ is induced by conjugation inside H.

Given G, prove that there is a group H such that $G \triangleleft H$ and every automorphism of G is induced by conjugation inside H.