1) Find the lattice of subgroups of the alternating group A_4. Determine which subgroups are normal. Do the same for the quaternion group Q of order 8. (By a lattice, I mean that you also indicate which subgroup is contained in which. Here is what happens for S_3 and $\mathbb{Z}/8\mathbb{Z}$

Also note that the minimal subgroups are always cyclic. The ones above them are generated by 2 elements, etc. This tells you how to go about finding all the subgroups of a given group.)

2) In this exercise you are required to calculate the commutator subgroup and center of some groups.
 (1) Find the center of the following groups: $D_{2n}, GL_n(\mathbb{F})$, where \mathbb{F} is any field.
 (2) Find the commutator subgroup of D_{2n}.
 (3) Prove that the commutator subgroup of $GL_n(\mathbb{F})$ is contained in $SL_n(\mathbb{F})$, \mathbb{F} a field. (In fact equality holds. Optional: prove that for $n = 2$.)

3) Prove that if $N < G$ and $[G : N] = 2$ then $N\triangleleft G$.

4) Prove that a group of prime order is cyclic.