Algebra 3 (2004-05) – Assignment 2

Instructor: Dr. Eyal Goren

Submit by Monday, September 27, 12:00 by mail-box on 10th floor.

1) Find the lattice of subgroups of the alternating group A_4 . Determine which subgroups are normal. Do the same for the quaternion group Q of order 8.

(By a lattice, I mean that you also indicate which subgroup is contained in which. Here is what happens for S_3 and $\mathbb{Z}/8\mathbb{Z}$

Also note that the minimal subgroups are always cyclic. The ones above them are generated by 2 elements, etc. This tells you how to go about finding all the subgroups of a given group.)

2) In this exercise you are required to calculate the commutator subgroup and center of some groups.

- (1) Find the center of the following groups: $D_{2n}, GL_n(\mathbb{F})$, where \mathbb{F} is any field.
- (2) Find the commutator subgroup of D_{2n} .
- (3) Prove that the commutator subgroup of $\operatorname{GL}_n(\mathbb{F})$ is contained in $\operatorname{SL}_n(\mathbb{F})$, \mathbb{F} a field. (In fact equality holds. Optional: prove that for n = 2.)
- **3)** Prove that if N < G and [G:N] = 2 then $N \triangleleft G$.
- 4) Prove that a group of prime order is cyclic.