Algebra 3 (2004-05) – Assignment 1

Instructor: Dr. Eyal Goren

Submit by Monday, September 20, 12:00 by mail-box on 10th floor.

- 1) Let G be a finite group such that for every $g \in G$ we have $g^2 = e$.
 - (1) Prove that G is an abelian group.
 - (2) Prove that G has 2^n elements.

2) Write down all the elements of $\operatorname{GL}_2(\mathbb{F}_2)$. Consider the action of this group on the set of non-zero vectors in \mathbb{F}_2^2 (the two dimensional vector space over \mathbb{F}_2). Show that this allows one to identify the group $\operatorname{GL}_2(\mathbb{F}_2)$ with the symmetric group S_3 .

3) Let D_{2n} be the dihedral group with 2n elements. It is generated by x, y, satisfying $x^n = y^2 = xyxy = 1$. Prove (algebraically) that every element not in the subgroup $\langle x \rangle$ is a reflection and find (geometrically) the line through which it is a reflection.

4) Show that the transpositions $(12), (23), \ldots, (n-1n)$ generate S_n . Show that (12) and (123...n) generate S_n .