
INTEGRAL DEPENDENCE AND NORMAL VARIETIES

EYAL Z. GOREN NOVEMBER, 1999

1. Basic definitions

Definition 1.1. Let A ⊂ B be rings (always commutative with 1). An element b ∈ B is called
integral over A if b satisfies a monic polynomial f(x) ∈ A[x]. That is, exist some a0, . . . , an−1 in A
such that

bn + an−1b
n−1 + · · ·+ a0 = 0.

Example 1.2. Let A = Z and B = Q. Then b ∈ Q is integral over Z if and only if b ∈ Z. Indeed,
if b ∈ Z then b solves x − b ∈ Z[x]. Conversely, write b = c/d for relatively prime integers c and d,
d > 0. Let f(x) = xn + an−1x

n−1 + · · ·+ a0 be a polynomial with integer coefficients that b satisfies.
Substituting b for x and multiplying by dn we obtain

cn = −(dan−1c
n−1 + · · ·+ dna0).

Since d divides the right hand side, we get that d|cn. But (d, c) = 1. Therefore, d = 1.

Proposition 1.3. Let A ⊂ B be rings and b ∈ B. The following are equivalent:
(1) b is integral over A.
(2) A[b] is a finitely generated module over A (i.e., exist b1, . . . , bn in A[b] such that A[b] = Ab1 +

· · ·+Abn).
(3) A[b] ⊂M ⊂ B, where M is finitely generated A-module.
(4) Exists a faithful A[b]-module K, finitely generated over A. (“faithful” means that if a ∈ A[b]

and ak = 0 for all k ∈ K then a = 0).

Proof. (1) implies (2) : For some a0, . . . , an−1 we have bn = −(an−1b
n−1 + · · ·+ a0). I claim that

A[b] = A+Ab+ · · ·+Abn−1.

Let J denote the right hand side. It is enough to prove that br ∈ J for every r ≥ n. For r = n this is
the identity bn = −(an−1b

n−1 + · · ·+ a0). Assume that br ∈ J then br = α0 + α1b+ · · ·+ αn−1b
n−1

for suitable αi ∈ A. Therefore br+1 = α0b+ α1b
2 + · · ·+ αn−2b

n−1 + αn−1b
n. Since αn−1b

n belongs
to J and α0b+ α1b

2 + · · ·+ αn−2b
n−1 belongs to J we get br+1 ∈ J .

(2) implies (3): Take M = A[b].
(3) implies (4): Take K = M . Since 1 ∈ K, if r ∈ A[b] annihilates K then, in particular, r ·1 = 0.

Thus r = 0 and K is a faithful A[b]-module.
(4) implies (1): Say that

K = Ac1 + · · ·+Acn

for some ci ∈ K. Consider the A-linear map

φb : K −→ K, φb(d) = bd.

Write

φb(cj) =
n∑
i=1

aijci, aij ∈ A.
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Let us define a map T by the following n× n matrix:

T = bİn − (aij).

By that we mean the following: If k ∈ K and k = α1c1+· · ·+αncn then T (k) = β1c1+· · ·+βncn, where
t(β1, . . . , βn) = T t(α1, . . . , αn). Now, in fact, T is identically zero, because Tcj = bcj − (

∑n
i=1 aijci).

Thus, for any expression k = α1c1 + · · ·+ αncn we get T (k) = 0 (which shows, somewhat perversely,
that T is well defined!).

Let Adj(T ) be the adjoint matrix to T . Then the transformation Adj(T ) · T = det(T ) · In is also
identically zero. But this is the transformation k 7→ det(T ) · k. Since K is a faithful A[b] module we
get det(T ) = 0. However, expanding det(T ) we see that for suitable ri ∈ A we have

bn + rn−1b
n−1 + · · ·+ r0 = 0.

Corollary 1.4. (1) The integral closure of A in B, defined as

{b ∈ B : b is integral over A}

and denoted NB(A), is a sub-ring of B containing A.
(2) NB(NB(A)) = NB(A).

Proof. We first remark that if A ⊂ B ⊂ C are three rings such that B is a finitely generated A-
module and C is a finitely generated B-module then C is a finitely generated A module. Indeed,
let B = Ab1 + · · · + Abm for some bi ∈ B and C = Bc1 + · · · + Bcn for some ci ∈ C. Then
C =

∑m,n
i=1,j=1 bicj . Furthermore, by induction, we get that if A = B0 ⊂ B1 ⊂ · · · ⊂ Bn are rings and

Bi is finitely generated Bi−1-module for every i ≥ 1, then Bn is a finitely generated A-module.
We use this as follows. Let b1, . . . , bn be elements of B integral over A. Then A[b1, . . . , bn] is

a finitely generated A module. Indeed, let Bi = A[b1, . . . , bi]. Note that bi is integral over Bi−1,
therefore, by the proposition, Bi is a finitely generated Bi−1-module.

We now prove (1). We notice that given b1, b2 ∈ NB(A) we have A[−b1], A[b1 + b2], A[b1b2] each
contained in the finitely generated A-module A[b1, b2]. Hence, by the proposition, −b1, b1 + b2, b1b2
are integral over A. Finally, clearly a ∈ A solves x− a. That is A ⊂ NB(A).

Let b ∈ NB(NB(A)). Then bn + an−1b
n−1 + . . . a0 = 0 for some ai ∈ NB(A). Then we see that b

is integral over A[a0, . . . , an−1]. Therefore A[a0, . . . , an−1, b] is finite over A[a0, . . . , an−1], which, in
turn, is finite over A. Therefore A[a0, . . . , an−1, b] is finite over A and contains A[b]. The proposition
gives that b is integral over A. I.e., that b ∈ NB(A).

The following easy exercises give some further examples and properties of integrality.

Exercise 1. Show that α ∈ Q(i) is integral over Z[i] if and only if α ∈ Z[i].

Exercise 2. Prove that N
Q(
√

5)(Z) = Z

[
1+
√

5
2

]
.

(For the exercises above use the following: If α ∈ K, K a finite extension of Q of degree n, then the
minimal polynomial of α over Q is of degree ≤ n and has integer coefficients. Those that know some
Galois theory should attempt to prove this (rather easy) fact).

Exercise 3. Let U be a multiplicative set in A. Then A ⊂ B is an integral extension implies A[U−1] ⊂
B[U−1] is an integral extension.

Exercise 4. A ⊂ B is an integral extension, m C B, n = m ∩ A. Then A/n ⊂ B/m is an integral
extension.



INTEGRAL DEPENDENCE AND NORMAL VARIETIES 3

One of the things we just showed is the following: Given a map of rings φ : A −→ B, there is a
canonical ring NB(A) containing the image of A. Note that NB(A) is really NB(φ(A)) We don’t
assume φ is injective.

2. Some geometrical remarks

Let us go back to algebraic geometry. Almost every result we’ll prove below has a geometric
content. One has to be careful about sneering at the geometric content in some cases. The reason is
that though some geometric content is pretty obvious over an algebraically closed field, the algebraic
theorems we prove will work for schemes as well, where the geometric content is more subtle!

First, let us take a closer look at affine varieties over an algebraically closed field k. Let

f : X −→ Y

be a morphism of affine varieties. Say B = O(X) and A = O(Y ). Let

φ : A −→ B

be the corresponding homomorphism of k-algebras.
1. Let Z be a closed subset of X. Say Z = Z(q) for a q an ideal of B. Then, I claim, f(Z)

= Z(φ−1(q)). That is, I(f(Z)) = φ−1(q). Let g ∈ I(f(Z)) then g(f(t)) = 0 for every t ∈ Z.
That is φ(g) = f∗(g) ∈ I(Z) = q. Otherwise said, g ∈ φ−1(q). Conversely, let g ∈ φ−1(q). Then
φ(g) = f∗(g) ∈ q. Thus f∗(g)(t) = 0 for every t ∈ Z. Or, g(f(t)) = 0 for every t ∈ Z. Thus
g ∈ I(f(Z)).

2. Let Z be a closed set in Y . Say Z = Z(a) then f−1(Z) is the closed set Z(φ(a)B). Let y ∈ Z,
g ∈ a. Then φ(g)(f−1(y)) = g(y) = 0. Thus f−1(Z) ⊂ Z(φ(a)B). Conversely, if t ∈ Z(φ(a)B) then
for any g ∈ a we have g(f(t)) = φ(g)(t) = 0. Thus, Z(φ(a)B) ⊂ f−1(Z).

3. Going up and down

Proposition 3.1. Let A ⊂ B be an integral extension. Assume that A and B are domains. Then A
is a field iff B is a field.

Proof. Assume A is a field. Let b ∈ B and b 6= 0. Then for some ai ∈ A we have bn+an−1b
n−1 + · · ·+

a0 = 0. We assume that n is the minimal possible. Thus a0 6= 0 else b(bn−1 +an−1b
n−2 + · · ·+a1) = 0

and that implies that bn−1 + an−1b
n−2 + · · · + a1 = 0 and n is thus not minimal. We therefore get

b(bn−1 + an−1b
n−2 + · · ·+ a1)(−a0)−1 = 1 and we see b is invertible.

Conversely, assume that B is a field. Let a ∈ A, a 6= 0. Then a−1 ∈ B is integral over A. Thus for
some ai ∈ A we get (a−1)n+an−1(a−1)n−1 + · · ·+a0 = 0. This gives a−1 = −(aan−1 + · · ·+an−1a0).
Thus a−1 ∈ A.

Exercise 5. What is the geometric content of this statement?

Corollary 3.2. Let A ⊂ B be an integral extension. Let qCB be a prime ideal. Let p = q∩A. Then
q is maximal iff p is maximal.

Proof. p is maximal if and only if A/p is a field. That holds iff B/q is a field because A/p ⊂ B/q is
an integral extension. But B/q is a field iff q is maximal.

Exercise 6. Give an example of A ⊂ B where: (i) q is maximal and p is not; (ii) p is maximal and
q is not.

Geometric Content: Let f : X −→ Y be a dominant integral morphism of affine varieties, i.e., the
extension of rings O(Y ) ↪→ O(X) is integral. A sub-variety in X is a point iff its image is a point!
(I.e., the fibres are zero-dimensional).
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Proposition 3.3. Let A ⊂ B be an integral extension. Let q1 ⊂ q2 be prime ideals of B. Then
q1 ∩A = q2 ∩A implies that q1 = q2.

Proof. Let p := q1 ∩A. Note that U = A \ p is a multiplicative set. Consider the extension A[U−1] ⊂
B[U−1]. It is an integral extension. The ideals qiB[U−1] are prime ideals whose intersection with
A[U−1] is pA[U−1]. This follows from the following exercise (applied to M = B,M1 = q1,M2 = A):

Exercise 7. Let A be a ring. U a multiplicative set and M1,M2 two submodule of an A module M .
Then M1[U−1] ∩M2[U−1] = (M1 ∩M2)[U−1].

Now, since A[U−1] ⊂ B[U−1] is an integral extension and pA[U−1] is a maximal ideal of A[U−1] we
get that both qiB[U−1] are maximal ideals of B[U−1]. But q1B[U−1] ⊂ q2B[U−1]. Hence q1B[U−1] =
q2B[U−1]. This implies that q1 = q2.

Geometric Content: A chain of distinct irreducible sets Z1 ⊂ · · · ⊂ Zn in X has distinct images in
Y (even after taking closure). In particular, dim(X) ≤ dim(Y ).

Theorem 3.4. (Cohen-Seidenberg) Let A ⊂ B be an integral extension.
(1) (Going-up) Let p1 ⊂ · · · ⊂ pn be prime ideals of A. Let q1 be a prime ideal of B such that

q1 ∩A = p1. Then there exist prime ideals of B, q1 ⊂ · · · ⊂ qn, such that qi ∩A = pi.
(2) (Going-down) Assume that A and B are also domains and that A is integrally closed (i.e.,

NQuot(A)(A) = A). Let p1 ⊂ · · · ⊂ pn be prime ideals of A. Let qn be a prime ideal of B such that
qn ∩A = pn. Then there exist prime ideals of B, q1 ⊂ · · · ⊂ qn, such that qi ∩A = pi.

Proof. (Of part (1) of the theorem). We first give a

Lemma 3.5. Let A ⊂ B be an integral extension and p a prime ideal of A. Then, there exists a
prime ideal q of B such that q ∩A = p.

Proof. Let U = A \ p. Let m = pA[U−1] be the maximal ideal of A[U−1]. Let n be a maximal ideal
of B[U−1] such that n ⊃ m. Then n ∩A[U−1] ⊃ m and does not contain 1. Hence n ∩A[U−1] = m.

Let φ : B −→ B[U−1] be the natural map. Let q = φ−1(n). Then q is prime (in fact, maximal).
We claim that q∩A = p. Since q∩A is disjoint from U , it is enough to show that (q∩A)[U−1] = m.
But (q ∩A)[U−1] = q[U−1] ∩A[U−1] = n ∩A[U−1] = m.

Geometric Content: A dominant integral morphism is surjective. (Take p to be a maximal ideal).

Exercise 8. Give a geometric proof of the lemma in the case when A and B are the rings of regular
functions of algebraic varieties and the corresponding map between the varieties is surjective.

Now, to prove (1), we may assume that n = 2. The general case follows by induction. We have
then the following situation: p1 ⊂ p2, q1 ∩ A = p1. Consider the integral extension A/p1 ⊂ B/q1.
The ideal p2/p1 is a prime ideal of A/p1. The lemma gives a prime ideal q of B/q1 such that
q ∩ A/p1 = p2/p1. Let q2 be the preimage in B of q. Then q2 is a prime ideal containing q1 and
(q2 ∩ A)/p1 = q2/q1 ∩ A/p1 = p2/p1 (we have used: if f : G −→ H is a group homomorphism,
I ⊃ Ker(f). Then f(I ∩ J) = f(I) ∩ f(J)).

Geometric Content: Let f : X −→ Y be a dominant integral morphism. Given a chain of closed
irreducible sets Z1 ⊃ · · · ⊃ Zn in Y , there exists a closed irreducible set Z̃1 of X such that f(Z̃1) = Z1.
(This is the lemma). Moreover (this is part (1) of the theorem), for any such Z̃1 there exists a chain

Z̃1 ⊃ · · · ⊃ Z̃n of closed irreducible sets in X such that for every i we have f(Z̃i) = Zi. In particular,
dim(Y ) ≤ dim(X). Hence, dim(X) = dim(Y ).

Part (2) of the theorem has a similar interpretation, only that one starts form Z̃n such that

f(Z̃n) = Zn.
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A further corollary is that a dominant integral morphism φ : X −→ Y is a closed map.
Let Z be closed in X. We may assume w.l.o.g. that Z is irreducible and thus corresponds to a

prime ideal q1CO(X). Then φ(Z) corresponds to the prime ideal q1 ∩ O(Y ) =: p1. Let y ∈ φ(Z).
It corresponds to a maximal ideal p2 such that p1 ⊂ p2. There exists a prime ideal q2 of O(X) such
that q2 ∩ O(Y ) = p2. It is necessarily a maximal ideal. Let t be the point in X corresponding to q2.
Then φ(t) = φ(t) is defined by p2. That is φ(t) = y.

4. Some local properties of rings

Proposition 4.1. Let R be a domain. Then R is integrally closed (i.e., if K = Quot(R) then
R = NK(R)) if and only if Rp is integrally closed for every maximal (or prime) ideal p.

Proof. Say R is integrally closed. Let α ∈ K be integral over Rp for some prime ideal p Then, for
suitable ai ∈ R and bi ∈ R \ p we have

αn +
an−1

bn−1
αn−1 + · · ·+ a0

b0
= 0.

Taking common denominator we find that for suitable ci ∈ R and b ∈ R \ p we have

αn +
cn−1

b
αn−1 + · · ·+ c0

b
= 0.

This gives

(bα)n + cn−1(bα)n−1 + · · ·+ c0b
n = 0.

Therefore bα is integral over R, hence in R. Thus, α ∈ Rp.

Conversely, suppose that for every maximal ideal p we have that Rp is integrally closed. Let α ∈ K
integral over R. Then the same polynomial α satisfies shows that α is integral over Rp for all p.
Therefore

α ∈ ∩
p maximal

Rp = R.

(We have proved the last equality in the past).

Recall that a ring is noetherian if every ascending chain of ideals becomes stationary.

Exercise 9. Prove that R is noetherian implies that Rp is noetherian for every prime ideal p.

Exercise 10. Let R be a domain. Then R has dimension 1 if and only if Rp has dimension 1 for
every prime ideal p.

Definition 4.2. R is called a Dedekind domain if :
(i) R is integrally closed.
(ii) R is noetherian.
(iii) R is of dimension 1.

The following proposition follows easily from the exercises and the previous proposition.

Proposition 4.3. Let R be a noetherian ring. Then R is a Dedekind domain if and only if Rp is a
Dedekind domain for every (maximal) prime ideal p.

We cite the following

Theorem 4.4. (Emmy Noether) Let R be a finitely generated domain over a field or over the integers
and let L be a finite extension of K, the quotient field of R. Then NL(R) is a finitely generated R-
module.
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Corollary 4.5. If R is a Dedekind domain so is NL(R).

Proof. Since NL(R) is finitely generated over the Noetherian ring R it is also Noetherian. It is
integrally closed: NL(NL(R)) = NL(R). Finally, being an integral extension we have dim(NL(R)) =
dim(R) = 1.

Definition 4.6. A variety X/k is called normal if the local ring of every point is integrally closed.
Equivalently, for every affine U ⊂ X the ring O(U) is integrally closed.

Corollary 4.7. Let X/k be an affine variety. Let R be the coordinate ring of X. We define the nor-
malization of X, denoted X̃, to be the affine variety with coordinate ring NQuot(R)(R). By Noether’s
theorem this is a finitely generated ring. Hence, there indeed exists a variety X̃ as stated. It is a
normal variety.

Note that there is a natural dominant morphism

π : X̃ −→ X.

Moreover, if Y is any normal affine variety and f : Y −→ X is a dominant morphism, then there
exists a unique morphism g : Y −→ X̃ such that π ◦ g = f .

Here are the main examples of Dedekind domains:
(1) Let R = Z. It is a Dedekind domain. Let L be a finite extension of Q. Then NL(R) – the ring

of algebraic integers in L – is a Dedekind domain.
(2) If X is a non-singular affine variety of dimension 1 (i.e., a curve) then R = O(X) is a noetherian

ring (because S noetherian implies S[x] noetherian and S/I noetherian), of dimension 1 (because
dim(X) = dim(Rp) for every prime ideal p) and is integrally closed because all the local rings are
integrally closed due to the following theorem we cite without proof:

Theorem 4.8. Let R be a regular local ring then R is integrally closed.

5. Discrete valuation rings

Let K be a field. A discrete valuation on K is a function

v : K× −→ R,

such that v(K×) is an abelian group of rank 1 and

v(xy) = v(x) + v(y), v(x+ y) ≥ min(v(x), v(y)).

We have:
(i) v(1) = 0, because v(1) = v(1 · 1) = v(1) + v(1).
(ii) v(−1) = 0, because v(1) = v(−1) + v(−1).
(iii) v(x−1) = −v(x), because v(1) = v(x) + v(1/x).
(iv) v(−x) = v(x), because v(x) = v(−x) + v(−1).
(v) If v(x) > v(y) then v(x + y) = v(y), because v(x + y) ≥ v(y) but also v(y) = v(x + y − x) ≥

min(v(x+ y), v(−x)) = min(v(x+ y), v(x)) = v(x+ y).

Exercise 11. Fix a rational prime p. For an integer a define v(a) to be the largest power of p dividing
a. For a rational number m = a/b let v(m) = v(a)− v(b). Show that v is a valuation on Q.

Given v define

R = Rv = {r ∈ K : v(r) ≥ 0}, m = mv = {r ∈ K : v(r) > 0}.

Theorem 5.1. The ring (R,m) is a local ring of dimension 1. The ideal m is principal, m = (π),
and every other non-trivial ideal of R is of the form (πn) for some n ≥ 1.
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Proof. Let I be any ideal of R. Let r be any element of I such that v(r) is minimal amongst the
elements of I. We claim that I = (r). One inclusion is clear. Let s be in I. Then v(s/r) =
v(s)− v(r) ≥ 0. Therefore s/r ∈ R and hence s = r · s/r ∈ (r).

Note that because every element a of R \ m has valuation zero the same holds for a−1. Thus the
units of R are precisely R \m and therefore (R,m) is a local ring. Moreover, arguing as above, we see
that if I = (r) is an ideal and v(r′) ≥ v(r) then r′ ∈ I. That is, if v(K×) = αZ for α > 0, then the
ideals of R are precisely the ideals

{r ∈ R : v(r) ≥ nα}.
Taking I = m, we see that an element π such that (π) = m exists. It is clear that v(π) = α.

Therefore, for any ideal I a minimal element in I can be chosen as πn. It follows also that R has a
unique prime ideal.

Definition 5.2. Let R be a domain with quotient field K. We say R is a discrete valuation ring
(DVR) if there exists a discrete valuation v on K such that R = Rv.

Theorem 5.3. Let R be a local noetherian domain of dimension 1. Then R is integrally closed if
and only if R is a DVR.

Proof. One direction is easy. If R is DVR then R is integrally closed:
Let α be an element of the quotient field K that is integral over R. Write α = m/n where m and

n are elements of R. Then, for suitable ai ∈ R we have

(m/n)s + as−1(m/n)s−1 + · · ·+ a0 = 0.

W.l.o.g. a0 6= 0. Now, in K we have the strong triangle inequality: v(x + y) ≥ min(v(x), v(y)) with
equality if v(x) 6= v(y). If v(m) < v(n) then one sees that v((m/n)s + as−1(m/n)s−1 + · · · + a1) =
s · v(m/n) < 0 while v(−a0) ≥ 0. Thus, v(m) ≥ v(n) and hence α = m/n is an element of R.

Conversely, assume that R is integrally closed local noetherian domain of dimension 1. Let m be the
unique prime ideal.

Step 1. m is a principal ideal.
Let a ∈ m. For every b ∈ R \Ra we consider the ideal

(a : b) = {r ∈ R : rb/a ∈ R} = {r ∈ R : rb ∈ Ra}.
Choose b such that (a : b) is maximal with respect to inclusion. We claim that (a : b) is a prime ideal.
Indeed, if xy ∈ (a : b) and x 6∈ (a : b) and y 6∈ (a : b) (so yb 6∈ Ra). Then, since x ∈ (a : yb) and
(a : yb) ⊃ (a : b) we get that (a : b) is not maximal. Contradiction. Therefore (a : b) is prime. Now,
since R is of dimension 1, (a : b) is a maximal ideal, and since R is local (a : b) = m.

We next show that m = R(a/b). First, (b/a)m ⊂ R. If equality doesn’t hold then (b/a)m ⊂ m.
Now, m, being an ideal of a noetherian ring, is a finitely generated R module and is mapped to itself
under multiplying by (b/a). This implies that (b/a) is integral over, and hence belong to, R. But
that means that b ∈ Ra, contradiction. Therefore, (b/a)m = R, or, m = R(a/b).

Step 2. Every ideal is a principal ideal.
Suppose not. Then we may take an ideal I which is maximal with respect to the property of not
being principal (this uses noetherianity). We have I ⊂ m = Rπ. We get

I ⊂ π−1I ⊂ R.
If I = π−1I then since I is a finitely generated R-module π−1 is integral over R, hence in R, hence
m = R. Contradiction. It follows that π−1I strictly contains I, therefore principal. But π−1I = (d)
implies I = (πd). Contradiction. Thus every ideal is principal.
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Step 3. A principal local domain (R,m) is a DVR.

Exercise 12. Prove Step 3. Here are some hints: First, put m = (π). Define for x ∈ R, v(x) =
max{m : x ∈ (πm)}. Use that in a principal ideal domain the concepts of prime (x|ab implies x|a or
x|b) and irreducible (x = ab implies a ∈ R× or b ∈ R×) are the same, and that a PID is a UFD, to
prove that v is a valuation on R.

Corollary 5.4. Let R be a Dedekind ring. Then Rp is a DVR for every prime ideal pCR.

6. Curves

Let k be an algebraically closed field.

Definition 6.1. A curve over k is a variety of dimension 1 over k.

If X is a curve, then for every regular point p ∈ X the local ring OX,p is a DVR. Note that since
a DVR is a regular ring, if a point p ∈ X has the property that OX,p is a DVR (or integrally closed)
then it is a regular point.

Now, if p is a regular point and, say, X ⊂ An (if needed, pass to an affine neighbourhood), and
p = (p1, . . . , pn), take a coordinate function xi− pi on An that is not in I(X). Then xi− pi generates
mp/m

2
p. This shows that the discrete valuation of the local ring OX,p is that of the order of vanishing

of a function at the point p.
On the other hand, if p is a singular point then one cannot talk in general about the order of

vanishing of a function at p in such terms. Indeed, if this is possible, we get that the local ring at p
is a DVR and hence p is a regular point.

Example 6.2. Consider that curve C : y2 = x3 in A2. The map

A
1 −→ C, t 7→ (t2, t3),

is a dominant morphism. Via this map we may view O(C) as the sub ring of the field k(t) generated
by t2 and t3. Its integral closure is non else then k[t]. Indeed, t is integral over k[t2, t3] since it solves
X2 − t2 = 0. On the other hand k[t] is integrally closed in k(t) since it is the coordinate ring of the
non-singular variety A1.

Therefore,

A
1 −→ C, t 7→ (t2, t3),

is the normalization of C. Now, at the singular point of C, namely at (0, 0), one cannot define the
order of vanishing of a function naively. Certainly y vanishes there and y ∈ m0 \m2

0. The same holds
for x. If we put v(y) = v(x) = 1, as is ”natural” to do, we get an immediate contradiction because
v(y2) = 2, v(x3) = 3 and y2 = x3 ! (Note that v(y) = 3, v(x) = 2 works, though).

Exercise 13. Discuss the case of the curve C : y2 = x2(x + 1). That is, find its normalization
C̃ −→ C. Discuss the local ring at zero. Show it is not integral and why we can’t make it into a DVR.

The main result in this section is the following

Theorem 6.3. (MAIN THEOREM) The following categories are equivalent:
(i) Non-singular projective curves and dominant morphisms.
(ii) Quasi-projective curves and dominant rational maps.
(iii) Function fields of tr. deg. 1 over k and k-morphisms.
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The equivalence of (ii) and (iii) is already known to us. It is a special case of the equivalence
between function fields and varieties up to birational equivalence. Also the transition from (i) to (ii)
is quite clear. Every object of the first category is also an object of the second. Also every dominant
morphism is a dominant rational map. Moreover, this functor of going from (i) to (ii) is faithful. That
is, if two morphisms give the same birational map then they are equal to begin with. Indeed, the set
where two morphisms are equal is closed, and if they agree as a rational map then it also contains a
non-empty open set, thus equal to the whole curve.

Therefore, the new part in the theorem above is going from (ii) to (i). Namely, to associate to any
quasi-projective curve C a non-singular projective curve C̃ in a canonical fashion, that depends only on
the birational class of the initial curve, and to associate to every dominant rational map f : C −→ D
a morphism f̃ : C̃ −→ D̃, in a functorial way.

It is not hard to guess how C̃ should look like. If we take a projective closure C′ of C in some
projective space and let K be the function field of (the closure of ) C, then for every open affine set
U ⊂ C′ the preimage of U in C̃ should simply be the normalization of U . All those normalizations are
done in the same field K and are compatible with intersections. Thus one hopes that there is a way
to ”glue” all of them together to a projective curve C̃. The main point of what we are about to do is
to show this is indeed possible. We remark that the gluing procedure itself, that is difficult from the
point of view we are taking so far, becomes trivial in the category of schemes!

Let K/k be a function field. That is, K is a finitely generated field extension of k of transcendence
degree one. Let CK be the set of all discrete valuation rings of K/k. By that we mean a DVR,
say R, contained in K, such that the valuation gives value zero to every non zero element of k, and
Quot(R) = K.

We shall attempt to view the set CK itself as a curve! For that we need first to define a topology
on CK . We define a topology by taking the closed sets to be ∅, CK , and every finite subset.

Before proceeding to define regular functions on open sets of CK we immerse in some algebra.

Lemma 6.4. (MAIN LEMMA) For every x ∈ K the set {R ∈ CK : x 6∈ R} is a finite set.

Proof. Since Quot(R) = K for every R ∈ CK , if x 6∈ R then x−1 ∈ mR. Thus, it is enough to prove
that for every y 6= 0 the set

(y)0 := {R ∈ CK : y ∈ mR}

is finite.
If y ∈ k then (y)0 is empty. Hence, we assume that y 6∈ k. In this case, the ring k[y] is a free

polynomial ring and K is a finite extension of the field k(y).
Let B be the integral closure of k[y] in K. It is a finitely generated k-algebra (by Noether’s

theorem), integrally closed and of dimension 1. That is, B is a Dedekind domain. Note that if s ∈ K
then s is algebraic over k(y). Therefore, for some g ∈ k[y] the element gs is integral over k[y] (clear
denominator in the minimal polynomial of s over k(y)). This shows that the quotient field of B is
K. Therefore B defines a normal, hence non-singular, affine curve X with ring of regular functions
B and function field K.

Now, suppose that y ∈ R for some R ∈ CK then k[y] ⊂ R and hence B ⊂ R. Let m = mR be the
maximal ideal of R and consider n = m ∩ B. It is a prime, hence maximal, ideal of B. We have an
inclusion of DVRs

Bn ⊂ Bm

with quotient field K. They must therefore be equal. We leave that as an exercise.

Exercise 14. Let A ⊂ B be two DVRs with the same quotient field. Then A = B.
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We may more pleasantly rephrase what we proved as follows. Let R ∈ CK such that y ∈ R then
R is isomorphic to the local ring of some point xR on X. (Thus every R ∈ CK is isomorphic to the
local ring of some point on a non-singular affine curve with quotient field K !) If furthermore y ∈ mR

then y, viewed as a function on X vanishes at xR. That, for y 6= 0, can happen for only finitely many
points. Hence, {R ∈ CK : y ∈ mR} is a finite set.

Corollary 6.5. 1. Every R ∈ CK is isomorphic to the local ring of some point on a non-singular
affine curve with quotient field K.

2. The set CK is infinite, hence an irreducible topological space.
3. For every R ∈ CK we have a canonical isomorphism R/mR = k.

Proof. The first claim was noted before. As for the second, the proof showed that all the local rings
of X are element of CK . There are infinitely many such (if two points x, y ∈ X define the same
local ring, then the maximal ideals are equal. But the maximal ideals determine the point.) The last
assertion follows immediately from the first.

We may now define functions on CK . Let U ∈ CK be a non-empty open set. We define

O(U) = ∩
R∈U

R.

We may make this more ”function like” as follows. Every f ∈ O(U) defines a function

f : U −→ k, f(R) = f (mod mR).

If f and g are two elements of O(U) giving rise to the same function then f − g ∈ mR for any R ∈ U .
Since CK is infinite and U is not empty, U is infinite and therefore f − g ∈ mR for infinitely many
R ∈ CK . The main lemma implies that f = g.

Definition 6.6. An abstract non-singular curve is an open non-empty subset U of CK with its induced
topology and sheaf of regular functions.

Let us now consider the category whose objects consist of all quasi-projective curves over k and all
abstract non-singular curves. We define a morphism,

f : X −→ Y,

between two objects of this category to be a continuous map of topological spaces, such that for every
open subset V ⊂ Y , and every regular function g : V −→ k, the composition

g ◦ f : f−1(V ) −→ k

is a regular function on f−1(V ). There are no surprises in checking that this is a category. We may
therefore speak on an isomorphism in this category.

More generally, given any object C in the above category, we define a morphism,

f : C −→ Y,

from C to a variety Y to be a continuous map, such that for every open set V in Y , and any regular
function g : V −→ k, the composition g ◦ f is a regular function of f−1(V ).

Theorem 6.7. Every non-singular quasi-projective curve Y is isomorphic to an abstract non-singular
curve.

Proof. It is pretty clear how to proceed. Let K/k be the function field of Y . Every local ring of
a point y ∈ Y is a DVR of K/k. Let U ⊂ CK be the set of the local rings of points of Y . Let
φ : Y −→ U be given by φ(y) = OY,y.

We first show that U is open. That is, that CK \ U is a finite set. If Y ′ ⊂ Y is an open affine set,
then it is enough to show that CK \ φ(Y ′) contains finitely many points. We may therefore assume,
to prove U is open, that Y is affine.



INTEGRAL DEPENDENCE AND NORMAL VARIETIES 11

Let B be the affine coordinate ring of Y . It is a Dedekind ring with quotient field K and it is
finitely generated over k. The proof of the main lemma shows that U consists precisely of all the
DVRs of K/k that contain B. But if x1, . . . , xn are generators for B over k then A ⊂ R for some
R ∈ Ck if and only if x1, . . . xn belong to R. That is to say, if R is not in U then R does not contain
at least one xi and therefore

R ∈ ∪
i=1,...,n

{R ∈ CK : xi 6∈ R}.

The r.h.s. is a finite set by the main lemma.

By construction φ is a bijection. Moreover, a non-empty set in Y is open iff it is co-finite and
the same holds in U , Thus (trivially!) φ is bi-continuous. Moreover, if V ⊂ Y is an open set then
O(V ) = ∩

y∈V
OY,y = O(φ(V )). Thus, φ is an isomorphism.

Lemma 6.8. Let X be an abstract non-singular curve, let P ∈ X, and let Y be a projective variety.
Let

φ : X \ {P} −→ Y

be a morphism. Then there exists a unique morphism,

φ̃ : X −→ Y,

extending φ.

Proof. The uniqueness of φ̃, if it exists, is clear: The set where two morphisms agree is closed.
To prove φ exists we may reduce to the case Y = P

n. Indeed, since Y ⊂ Pn for some n, we may
view φ as a morphism

φ : X \ {P} −→ P
n.

If it extends to

φ̃ : X −→ P
n,

then the preimage of Y under φ̃ is a closed set containing X \{P}, thus equal to X. That is, φ̃ factors
through Y .

Let therefore φ : X \ {P} −→ P
n
x0,...,xn be a morphism. Let

U = {(x0 : · · · : xn) : xi 6= 0 ∀i}.
If φ(X \ {P}) ∩ U = ∅, then φ(X \ {P}) being irreducible is contained in one of the hyperplanes
{xi = 0} forming the complement of U . However, each such hyperplane is isomorphic to Pn−1 and
we are done by induction on the dimension. We may therefore assume that φ(X \ {P}) ∩ U 6= ∅.
Therefore, for every i, j the function fij = φ∗(xi/xj) is a regular function on X \ {P}. In particular,
fij ∈ K(X).

Let vP be the valuation associated to the local ring P . Let

r0 = vP (f00), r1 = vP (f10), . . . , rn = vP (fn0).

Let i be an index such that ri is minimal. Then, for every j we have

vP (fji) = vP (fj0/fi0) = rj − ri ≥ 0.

Thus, fji ∈ P for every j. We define

φ̃(P ) = (f0i(P ), . . . , fni(P )).
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Note that this is well defined! First fii = 1 and for every j we have fji(P ) ∈ k.
To show that φ̃ is a morphism, it is enough to show that regular functions in a neighbourhood of

φ̃(P ) pull back to regular functions in a neighbourhood of P . Note that in fact

φ̃(P ) ∈ Ui = {x : xi 6= 0} ∼= A
n
x0
xi
,..., xnxi

.

It is enough to prove the assertion for open sets contained in Ui. Thus, it would be enough to show that
φ̃∗xj/xi is a regular function (the assertion then follows for any open set in Ui). But, at every point
in the preimage of Ui that is not P this is already known and at P we have φ̃∗xj/xi = fji ∈ P .

Theorem 6.9. Let K/k be a function field. Then CK is isomorphic to a non-singular projective
curve.

Proof. We saw that given R ∈ CK there exists some non-singular affine curve XR and a point
xR ∈ XR such that R ∼= OX,xR . The curve XR is isomorphic to the abstract curve U ⊂ CK , where
U = {OX,x : x ∈ X}. Therefore, we may write

CK = ∪RUR,
where each UR is isomorphic to an affine non-singular curve. However, since open sets are cofinite,
CK is quasi compact. Thus,

CK = U1 ∪ · · · ∪ Ut,
where each Ui is an open affine subset, that is, isomorphic to a non-singular affine curve Xi. Say
φi : Ui −→ Xi. Let Yi be the closure of Xi in some projective space Pn(i). Applying the previous
lemma successively, we see that there exists a morphism

φi : CK −→ Yi,

extending the one on Ui. Let

φ : CK −→ Y1 × · · · × Yt ⊂ Pn(1) × · · · × Pn(t) ⊂ PN ,
be the diagonal morphism. That is

φ(R) = (φ1(R), . . . , φt(R)).

Let Y be the closure of the image of φ. It is a projective curve. We shall show that φ : CK −→ Y is
an isomorphism.

Let P ∈ CK . Then P ∈ Ui for some i. Let π : Y −→ Yi be the projection induced from Y ⊂
∏
Yi.

Then π ◦ φ = φi on the set Ui. We get inclusions of local rings

OYi,φi(P )
π∗−→ OY,φ(P )

φ∗−→ OCK ,P .
Moreover, since φi is an isomorphism on Ui, we get that all three rings are isomorphic (φ∗ ◦ π∗ is an
isomorphism) . In particular, for every P ∈ CK the rings OY,φ(P ) and OCK ,P are isomorphic under
φ∗.

We next show φ is surjective. Let Q ∈ Y and take some discrete valuation ring R containing OY,Q
(localize the integral closure of OY,Q at a suitable prime ideal). Then R is the local ring of some point
P ∈ CK and the argument above shows that OY,φ(P ) is isomorphic to R. If Q and Q′ are points on a
curve such that OQ ⊂ OQ′ then Q = Q′ (Exercise 14). Thus φ(P ) = Q and therefore φ is surjective.
This rational also shows that φ is injective, because OY,φ(P )

∼= OCK ,P .
We got so far that φ is a bijective morphism such that φ∗ induces an isomorphism of local ring.

This implies that φ−1 is a morphism (use that the set where a function f on a variety Z is regular is
precisely ∪

f∈OZ,z
z).
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Theorem 6.10. (MAIN THEOREM) The following categories are equivalent:
(i) Non-singular projective curves and dominant morphisms.
(ii) Quasi-projective curves and dominant rational maps.
(iii) Function fields of tr. deg. 1 over k and k-morphisms.

Proof. The functors (i)⇒ (ii) and (ii)⇒ (iii) are known to us. We also know that (ii)⇒ (iii) is an
equivalence of categories. It would therefore be enough to construct a functor (iii) ⇒ (i) and show
that (i)⇒ (iii) and (iii)⇒ (i) give an equivalence of categories.

Given a function field K/k associate to it the curve CK . This curve is isomorphic to a non-singular
projective curve. Given another function field K ′/k and a homomorphism of k-algebras K ′/k −→ K/k
we have a rational map CK −→ CK′ , and therefore a morphism U −→ CK′ for some open non empty
set U in CK . Thus, the morphism extends uniquely to a morphism CK −→ CK′ . It is immediate to
verify that this process takes compositions to compositions, hence gives a functor (iii)⇒ (i).

Obviously, the objects associated to CK and CK′ under (i) ⇒ (iii) are just K and K ′, and the
induced map K ′ −→ K is just the one we have started with. Thus, the functors (i) ⇒ (iii) and
(iii)⇒ (i) are equivalences of categories.

7. summary

To every affine variety X be have associated a canonical affine variety π : X̃ −→ X by the property
that O(X̃) is the integral closure of O(X) in its function field. This is a functor on the category of
affine varieties: to every morphism f : X −→ Y there exists a canonical morphism f̃ : X̃ −→ Ỹ such
that the following diagram commutes

X̃
f̃−→ Ỹ

↓ ↓
X

f−→ Y

.

The morphism π : X̃ −→ X is an example of an integral dominant morphism. It enjoys the many fine
properties of a general dominant integral morphism f : X −→ Y :

(i) f is a surjective closed morphism.
(ii) dim(X) = dim(Y ) (and the fibres are zero dimensional, but this is in fact automatic as a

general theorem says).
(iii) The hierarchy of closed sets in X and Y is very similar, as the the Cohen-Seidenberg theorem

tells us: Given a chain of closed irreducible sets Z1 ⊃ · · · ⊃ Zn in Y , there exists a closed irreducible
set Z̃1 of X such that f(Z̃1) = Z1. Moreover, for any such Z̃1 there exists a chain Z̃1 ⊃ · · · ⊃ Z̃n of

closed irreducible sets in X such that for every i we have f(Z̃i) = Zi.

Furthermore, every non-singular variety is a normal variety and normal varieties have important
properties not shared by general varieties. For example:

(i) The singular set is of codimension ≥ 2. (In particular a normal curve is non singular).
(ii) The local ring of every sub-variety of codimension one is a discrete valuation ring (see next

section).

The connection between normality and discrete valuation rings was crucial in the study of curves.
Given a curve C over k with function field K, we associated to it a canonical non singular projective
curve ”consisting of all the discrete valuation rings of K/k”. This description, in fact, was a technical
gadget to glue together all the normalizations of affine open sets in C. Note that for a curve the
sub-varieties of codimension 1 are just points. We used heavily the general fact that if the curve is
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normal the local rings are discrete valuation rings. This discrete valuation was an algebraic mean to
talk precisely about the order of vanishing (or pole) of a function at a point.

8. Some further properties of normal varieties

Definition 8.1. Let X be any variety. Let Z ⊂ X be a sub variety. We define the local ring of Z in
X, OX,Z , to be the equivalence classes of pairs (U, f) consisting of an open set U such that U ∩Z 6= ∅
and f is a regular function on U . We decree that (U, f) = (U ′, f ′) if f = f ′ on U ∩ U ′. (Note that
U ∩U ′ intersects Z at some point. In fact, both U ∩Z and U ′ ∩Z are dense open in Z in the relative
topology on Z).

It is easy to see that this is indeed a local ring. The ideal m defined by all couples (U, 0) is a
unique maximal ideal because OX,Z \m consists of invertible elements! The quotient field O(X,Z)/m
is canonically K(Y ), the function field of Y .

In the case where X is affine and Z is defined by a prime ideal p one checks that OX,Z is non other
then the localization of O(X) at the ideal p. This remark shows that in general

dim(OX,Z) = dim(X)− dim(Z).

In particular, if Z is a point then OX,Z is just the local ring of the point Z and it has dimension equal
to that of X.

In the case where Z is of codimension 1 we see thatOX,Z is a local ring of dimension 1. Furthermore,
if X is normal then OX,Z is integral closed, hence a DVR. Since this is of tantamount importance we
formulate it as

Theorem 8.2. Let X be a normal variety. Then the local ring OX,Z of any sub variety of codimension
1 is a discrete valuation ring.

Definition 8.3. Let X be a normal variety. Let f be a function on X, that is, an element of the
function field of X. The divisor of f is

(f) =
∑
Z

vZ(f) · [Z],

where the sum extends over all (irreducible) sub varieties Z ⊂ X of codimension 1, the symbol vZ
stands for the discrete valuation of OX,Z normalized to have value group Z and [Z] is a formal symbol.

It is easy to see that (f) is an element of the free abelian group on the symbols [Z] (for Z ⊂ X
sub variety of codimension 1). That is, for only finitely many Z we have vZ(f) 6= 0. This is because
vZ(f) 6= 0 implies that f is identically zero on Z or 1/f is identically zero on Z and therefore the
collection of Z such that vZ(f) 6= 0 is contained in the closed set T defined as follows: Let U be the
open set such that f is regular on U . Let A = f−1(0). A closed set in U . Then T = U \ A: an open
dense set (if f 6≡ 0).

Another consequence of the local ring of Z being a discrete valuation ring is the following: Let U ⊂ X
be any open affine subset such that U ∩ Z is non empty. Then OU,Z = OX,Z = O(U)p where p is
the prime ideal of O(U) defining Z in U , and is a discrete valuation ring. Let f be any element that
generates the maximal ideal of O(U)p. We may shrink U such that f is a regular function on U .

Consider the closed set defined by f . It certainly contains Z. We may therefore choose some open
set W ⊂ U such that (f) ∩W = Z ∩W . We may even take W to be affine.

Finally, note that (f) is a radical ideal: If gn ∈ (f). Let v be the valuation associated to Z. Then
v(gn) = n · v(g) = nb for some positive b. Consider g/f b. It has non-negative valuation at every local
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ring of every closed irreducible set T of codimension 1 in W . Therefore, it is an element of O(W ) and
hence g = f b · (g/f b) ∈ (f). 1

Conclusion: Let X be a normal variety. Let Z be a sub variety of codimension 1, then there exists
an open affine set U ⊂ X such that U ∩ Z 6= ∅ and U ∩ Z = (f) for some regular function f ∈ O(U).

Theorem 8.5. Let X be a normal variety. Then Sing(X) is of codimension ≥ 2.

Proof. Assume not. We know that the singular locus is a closed set. Let Z be a component of the
singular locus of codimension 1. Thus, every point on Z is a singular point of X. Replace X by a
suitable affine variety, still denoted X, such that Z has the property I(Z) = (f). Let z ∈ Z such that
z in non singular as a point on Z. We shall derive a contradiction by showing that z is a non-singular
point of X. Let n = dim(X).

Let f1, . . . , fn−1 ∈ O(X) such that f1, . . . , fn−1 is a basis for mZ,z/m
2
Z,z . We claim that f, f1, . . . , fn−1

is a basis for mX,z/m
2
X,z. It is enough to show they generate, because always dim(mX,z/m

2
X,z) ≥ n.

Let g ∈ mX,z. We may write g =
∑
aifi (mod (f)) and we are done.2

The following results will not be proved at this point. We may return to them later on in the course.
The following is one of the many formulations of Zariski’s Main Theorem

Theorem 8.6. Let Y be a normal variety over k and f : X −→ Y a morphism that is birational and
has finite fibres. Then f is an isomorphism of X with an open set U ⊂ X.

Definition 8.7. Let X be a variety. It is called “non-singular in codimension 1” if the local ring of
every sub variety of codimension 1 is regular (equivalently, integrally closed; equivalently, a DVR).
Equivalently, the set Sing(X) has codimension ≥ 2.

Thus, every non-singular variety is normal and every normal variety is non singular in codimension
1. However, the cone z2 = xy is a normal singular variety, and the affine surface in A4 whose ring of
functions is k[x, xy, y2, y3] is not normal but is non-singular at codimension 1.

Theorem 8.8. Let X be an irreducible affine hypersurface. If X is non-singular in codimension 1,
then X is normal.

Lastly, many properties of a variety X at a point x can be studied via the tangent cone CX,x. In
particular:

Theorem 8.9. If CX,x is reduced, normal3 or regular (as a variety), then so is the local ring OX,x.

1We have tacitly used the following fact: Let R be an integral domain. Then R is equal to the intersection ∩Rp

over all prime ideals of height 1. In fact one has the following theorem:

Theorem 8.4. Let R be a noetherian integral domain. Then R is integrally closed iff (i) R = ∩Rp – the intersection
being taken over all prime ideals of height 1; AND (ii) for all prime ideals p of height 1 the ring Rp is a DVR.

2Normality was used only to have Z generated by a unique element.
3Here normality means that the tangent cone is in particular reduced. That is, the ideal of initial forms defining the

tangent cone is a radical ideal.


