ASSIGNMENT 7 - ALGEBRAIC GEOMETRY 189-706 A

EYAL Z. GOREN OCTOBER 29, 1999

To be submitted Wednesday, November 3.

1. Prove that R is noetherian implies that $R_{\mathfrak{p}}$ is noetherian for every prime ideal $p \triangleleft R$.

2. Let R be a domain. Prove that R has dimension one if and only if $R_{\mathfrak{p}}$ has dimension one for every prime ideal $p \triangleleft R$.

3. Fix a rational prime p. For an integer a define v(a) to be the largest power of p dividing a. For a rational number m = a/b let v(m) = v(a) - v(b). Show that v is a valuation on \mathbb{Q} .

4. Prove that a principal local domain (R, \mathfrak{m}) is a DVR. Use that a PID is a UFD. Note that $\mathfrak{m} = (\pi)$ for π irreducible. Given $r \in R$ write $r = \pi^{v(r)} \cdot r'$, with $(r', \pi) = (1)$, and some integer v(r).

5. Let $A \subset B$ be two DVRs with the same quotient field. Show that A = B.

6. A) Consider the curve $C: y^2 = x^2(x+1)$ and the point (0,0) on it. Show that the local ring of (0,0) is not a DVR. Find the normalization \mathcal{D} of C.

B) Show that the pre-image of (0, 0) consists of two points. Say, s and t. Let v_s and v_t be the corresponding valuations. Give a function on \mathcal{D} with different valuation at s and t. How does this relate to A)?