1. Prove that R is noetherian implies that R_p is noetherian for every prime ideal $p \lhd R$.

2. Let R be a domain. Prove that R has dimension one if and only if R_p has dimension one for every prime ideal $p \lhd R$.

3. Fix a rational prime p. For an integer a define $v(a)$ to be the largest power of p dividing a. For a rational number $m = a/b$ let $v(m) = v(a) - v(b)$. Show that v is a valuation on \mathbb{Q}.

4. Prove that a principal local domain (R, m) is a DVR. Use that a PID is a UFD. Note that $m = (\pi)$ for π irreducible. Given $r \in R$ write $r = \pi^{v(r)} \cdot r'$, with $(r', \pi) = (1)$, and some integer $v(r)$.

5. Let $A \subset B$ be two DVRs with the same quotient field. Show that $A = B$.

6. A) Consider the curve $\mathcal{C} : y^2 = x^2(x + 1)$ and the point $(0, 0)$ on it. Show that the local ring of $(0, 0)$ is not a DVR. Find the normalization \mathcal{D} of \mathcal{C}.

 B) Show that the pre-image of $(0, 0)$ consists of two points. Say, s and t. Let v_s and v_t be the corresponding valuations. Give a function on \mathcal{D} with different valuation at s and t. How does this relate to A)?