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Annals of Mathematics, 155 (2002), 157-187 

Entropy waves, the zig-zag graph product, 
and new constant-degree expanders 

By OMER REINGOLD, SALIL VADHAN, and Avi WIGDERSON* 

Abstract 

The main contribution of this work is a new type of graph product, which 
we call the zig-zag product. Taking a product of a large graph with a small 

graph, the resulting graph inherits (roughly) its size from the large one, its 

degree from the small one, and its expansion properties from both! Iteration 

yields simple explicit constructions of constant-degree expanders of arbitrary 
size, starting from one constant-size expander. 

Crucial to our intuition (and simple analysis) of the properties of this 

graph product is the view of expanders as functions which act as "entropy 
wave" propagators -they transform probability distributions in which en- 

tropy is concentrated in one area to distributions where that concentration is 

dissipated. In these terms, the graph product affords the constructive interfer- 
ence of two such waves. 

Subsequent work [ALWO1], [MWO1] relates the zig-zag product of graphs 
to the standard semidirect product of groups, leading to new results and con- 
structions on expanding Cayley graphs. 
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1. Introduction 

1.1. Expander graphs. Expanders are graphs which are sparse but never- 
theless highly connected. A precise definition will be given in the next section, 
but here we informally list some properties of such graphs (which are equivalent 
when formally stated and can serve as alternate definitions) 

* The graph satisfies "strong" isoperimetric inequalities. 

* Every set of vertices has "many" neighbors. 

* Every cut has "many" edges crossing it. 

* A random walk on the graph converges quickly to the stationary distri- 
bution. 

Expander graphs have been used to address many fundamental prob- 
lems in computer science, on topics including network design (e.g. [Pip87], 
[PY82], [AKS83]), complexity theory ([Val77], [Sip88], [Urq87]), derandomiza- 
tion ([NN93], [INW94], [IW97]), coding theory ([SS96], [Spi96]), and cryptog- 
raphy ([GILVZ90]). Expander graphs have also found some applications in 
various areas of pure mathematics [KR83], [Lub94], [GroOO], [LPO1]. 

Standard probabilistic arguments ([Pin73]) show that almost every constant- 

degree (> 3) graph is an expander. However, explicit and efficient construction 
of such graphs (which is required by most of the computer science applications 
above) seems to be much harder. This problem leads to an exciting and exten- 
sive body of research, developed mainly by mathematicians intrigued by this 

computer science challenge. 
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Most of this work was guided by the algebraic characterization of ex- 

panders, developed in [Tan84], [AM85], [Alo86a]. They showed the intimate 
relation of (appropriate quantitative versions of) all the properties above to the 

spectral gap in the adjacency matrix (or, almost equivalently, the Laplacian) 
of the graph. Using it, expanders can be defined as follows: An infinite family 
G, of D-regular graphs is an expander family if for all n the second largest 
(in absolute value) eigenvalue of the adjacency matrix of Gn is bounded uni- 

formly from above by the same A < D. (Note that the degree D is independent 
of n; this is what we mean by "constant degree.")1 

This algebraic definition naturally led researchers to consider algebraic 
constructions, where this eigenvalue can be estimated. The celebrated sequence 
of papers [Mar73], [GG81], [AM85], [AGM87], [JM87], [LPS88], [Mar88], 
[Mor94] provided such constant-degree expanders. All these graphs are very 
simple to describe: given the name of a vertex (in binary), its neighbors can 
be computed in polynomial time (or even logarithmic space). This level of 

explicitness is essential for many of the applications. However, the analysis 
bounding the eigenvalue is quite sophisticated (and often based on deep math- 
ematical results). Thus, it is hard to intuitively understand why these graphs 
are expanders. 

A deviation from this path was taken in [Ajt94], where a combinatorial 
construction of cubic expanders was proposed. It starts with an arbitrary cubic 
N-vertex graph and applies a sequence of polynomially many local operations 
which gradually increase the girth and turn it into an expander. However, 
the resulting graphs do not have any simply described form, and they lack 
the explicitness level (and hence applicability) of the algebraic constructions 
mentioned above. 

In this work, we give a simple, combinatorial construction of constant- 

degree expander graphs. Moreover, the analysis proving expansion (via the 
second eigenvalue) is as simple and follows a clear intuition. The construction 
is iterative, and needs as a basic building block a single, almost arbitrary ex- 

pander of constant size. The parameters required from it can be easily obtained 
explicitly, but exhaustive search is an equally good solution since it requires 
only constant time. Simple operations applied to this graph generate another 
whose size is increased but whose degree and expansion remain unchanged. 
This process continues, yielding arbitrarily large expanders. 

10n an intuitive level, the connection between the spectral gap and the combinatorial and 

probabilistic properties of expanders listed above should not be surprising. For example, it is well 
known that the standard random walk on the graph converges exponentially with base A/D to the 

stationary uniform distribution. Moreover, equal partitions of the vertices of a graph, thought of 
as il-vectors, are orthogonal to the uniform distribution, and so the bilinear form representing the 
number of edges in the cut can be bounded in terms of the gap between D and A. 
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The heart of the iteration is our new "zig-zag" graph product. Informally, 
taking a product of a large graph with a small graph, the resulting graph 
inherits (roughly) its size from the large one, its degree from the small one, 
and its expansion properties from both! (That is, the composed graph has good 
expansion properties as long as the two original graphs have good expansion 
properties.) 

In the next subsections we give high level descriptions of the iterative con- 
struction, the new graph product, the intuition behind it, various extensions. 
We then mention subsequent work on the relation of the zig-zag product in 

graphs to the semidirect product in groups and its applications to expanding 
Cayley graphs. 

1.2. Overview of expander construction. In this section, we describe a sim- 

plified, but less efficient, version of our expander construction and omit formal 
proofs. Our full construction is described in detail in Section 3. Throughout 
this section, all graphs are regular, undirected, and may have loops and parallel 
edges. The adjacency matrix of an N-vertex graph G is the matrix M whose 

(u, v)th entry is the number of edges between vertices u and v. If the graph is 

D-regular, then the normalized adjacency matrix is simply M/D. Note that 
this stochastic matrix is the transition probability matrix of the natural ran- 
dom walk on G, every step of which moves a "token" from a current vertex 

along a uniformly chosen edge to a neighboring vertex. It is easy to see that 
this matrix has an eigenvalue of 1, corresponding to the constant eigenvector, 
and it turns out that all other eigenvalues have absolute value less than 1. 
Our primary interest will be the second largest (in absolute value) eigenvalue 
(which is known to govern the convergence rate of the random walk, and as 
mentioned above is the essence of expansion). 

Thus, three essential parameters play a role in an expander - size, degree 
and expansion. We classify graphs accordingly. 

Definition 1.1. An (N,D, X)-graph is any D-regular graph on N ver- 

tices, whose normalized adjacency matrix has second largest (in absolute value) 
eigenvalue at most A. 

The basic operations. We use two operations on (the adjacency matrices 

of) graphs - the standard matrix squaring, and our new zig-zag graph product. 
Here is their effect on these three parameters. 

SQUARING: Let G2 denote the square of G. Then 

Fact 1.2. (n, d, )2 _ (n, d2, A2). 

THE ZIG-ZAG PRODUCT: Let G1 (G2 denote the new graph product of 

G1 and G2. Then 
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THEOREM 1.3. (N1,D1,A1)()(D1,D2,A2) - (N1ID1, D2, Ai+A2+A2). 

(The eigenvalue bound of A1 + A2 + A2 is improved somewhat in Sections 3 
and 4.) 

The iterations. Let H be any (D4, D, 1/5)-graph, which will serve as the 

building block for our construction. We define a sequence of graphs Gi as 
follows. 

G1= H2, 

* Gi+I G OH. 

From Fact 1.2 and Theorem 1.3 above, it is easy to conclude that this sequence 
is indeed an infinite family of expanders: 

THEOREM 1.4. For every i, Gi is an (Ni, D2, 2/5)-graph with Ni = D4i. 

This construction is not as efficient as we would like -computing neigh- 
borhoods in Gi takes time polynomial in Ni rather than polynomial in log Ni. 
As we show in Section 3, this is easily overcome by augmenting the iterations 
with another standard graph operation. 

1.3. The zig-zag graph product. The new product mentioned above takes 
a large graph and a small one, and produces a graph that (roughly speaking) 
inherits the size of the large one but the degree of the small one. This was the 

key to creating arbitrarily large graphs with bounded degrees. Naturally, we 
are concerned with maintaining the expansion properties of the two graphs. 
First, we describe the product. 

For simplicity, we assume that the edges in our D-regular graphs are 
D-colored; that is, they are partitioned to D perfect matchings. (This as- 
sumption loses generality, and we will remove it in the formal construction in 

§2.) For a color i E [D] and a vertex v let v[i] be the neighbor of v along the 

edge colored i. With this simple notation, we can formally define the zig-zag 
product ( (and then explain it). 

Definition 1.5. Let G1 be an Dl-regular graph on [N1] and G2 a 

D2-regular graph on [D1]. Then G1 ©G2 is a D2-regular graph on [N1] x [D1] 
defined as follows: For all v E [N1], k E [D1], i, j E [D2], the edge (i, j) connects 
the vertex (v, k) to the vertex (v[k[i]], k[i][j]). 

What is going on? Note that the size of the small graph G2 is the degree 
of the large graph G1. Thus a vertex name in G1 G2 has a first component 
which is a vertex of the large graph, and a second which is viewed both as a 
vertex of the small graph and an edge color of the large one. The edge label 
in G1 ()G2 is just a pair of edge labels in the small graph. One step in the 
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new product graph from a vertex (v, k) along the edge (i, j) can be broken into 
three substeps. 

1. (v, k) - (v, k[i]) -A step ("zig") in the small graph moving k to k[i]. 
This affects only the second component, according to the first edge label. 

2. (v, k[i]) - (v[k[i]], k[i]) A step in the large graph, changing the first 
component according to the second, viewed as an edge color. 

3. (v[k[i]], k[i]) -- (v[k[i]], k[i][j]) - A step ("zag") in the small graph moving 
k[i] to k[i][j]. This affects only the second component, according to the 
second edge label. 

1.4. Intuition. Why does it work? More precisely, why does Theorem 1.3 
hold? What this theorem says intuitively, is that G1 (G2 is a good expander 
as long as both G1 and G2 are good expanders. Consider the above three steps 
as a random walk on G1 (G2. Then Steps 1 and 3 are independent random 
steps on the small graph. If at least one of them "works" as well as it does in 
the small graph, then this would guarantee that the new graph is as good an 
expander as the small one. So let us argue (very intuitively) that indeed one 
of them "works." 

A random step in an expander increases the (H2-) entropy of a distribu- 
tion on the vertices, provided that it is not already too close to uniform. Let 
us consider a distribution on the vertices of the new graph (v, k). Roughly 
speaking, there are two cases. 

* If the distribution of the second component k (conditioned on v) is not 
too uniform, then Step 1 "works." Since Step 2 is just a permutation 
and Step 3 is a random step on a regular graph, these steps cannot make 
the distribution less uniform and undo the progress made in Step 1. 

* If k (conditioned on v) is very close to uniform, then Step 1 is a "waste." 
However, Step 2 is then like a real random step in the large expander Gi! 
This means that the entropy of the first component v increases. Note 
that Step 2 is a permutation on the vertices of G1 ( G2, so if entropy 
increases in the first component, it decreases in the second. That means 
that in Step 3 we are in the good case (the conditional distribution on the 
second component is far from uniform), and the entropy of the second 
component will increase by the expansion of the small graph. 

The key to this product is that Step 2 is simultaneously a permutation (so 
that any progress made in Step 1 is preserved) and an operation whose "projec- 
tion" to the first component is simply a random step on the large graph (when 
the second component is random). All previous discussions of expanders fo- 
cused on the increase of entropy to the vertex distribution by a step along a 
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random edge. We insist on keeping track of that edge name, and consider the 

joint distribution! In a good expander, if the edge is indeed random, the en- 

tropy propagates from it to the vertex. This reduces the (conditional) entropy 
in the edge. Thus the "entropy wave" in Step 2, in which no fresh randomness 
enters the distribution on vertices of G1 ()G2, is what facilitates entropy in- 
crease in Steps 1 or 3. Either the "zig" step does it, if there is room for more 

entropy in k, or if not (which may be viewed as destructive interference of the 

large and small waves in Step 1), Step 2 guarantees constructive interference 
in Step 3. Moreover, Step 1 is not redundant as, if there is no or little ini- 
tial entropy in k, the wave of Step 2 (being a permutation) may flood k with 

entropy, destroying the effect of Step 3. 
The formal proof of Theorem 1.3 follows this intuition quite closely, and 

separately analyzes these two extreme cases. Indeed, since it becomes linear 

algebra, these two cases are very natural to define, and the only ones to worry 
about -all intermediate cases follow by linearity! Moreover, the variational 
definition of the second eigenvalue better captures the symmetry of the zig 
and zag steps (and gives a better bound than what can be obtained from this 

asymmetric intuition). 

1.5. Expanders and extractors. Here we attempt an intuitive explanation 
of how we stumbled on the definition of the zig-zag product, and the intuition 
that it does what it should. While this subsection may not be self-contained, 
it will at least lead the interested reader to discover more of the fascinating 
world of extractors. 

The current paper is part of research described in our conference paper 
[RVWOO] which deals with constructions of both expanders and extractors. 
Extractors are combinatorial objects, defined by [NZ96], which, roughly speak- 
ing, "purify" arbitrary nonuniform probability distributions into uniform ones. 
These objects are as fascinating and as applicable as expanders (see, e.g., the 

survey papers [Nis96], [NT99]). Like expanders, their applications demand 

explicit construction. Like with expanders, the quest for such constructions 
has been extremely fruitful and illuminating for complexity theory. Unlike ex- 
panders, the construction of optimal extractors is still a challenge, although 
the best existing ones are quite close to optimal (see the current state of the 
art, as well as a survey of previous constructions, in [RSWOO], [TUZO1]). 

Expander graphs were ingredients in some previous extractor construc- 
tions (as extractors may be viewed as graphs as well). Here the situation is 
reversed. The expander construction of this paper followed our discovery of 
nearly optimal high min-entropy extractors, which handle the "purification" of 
distributions which are already not too far from being uniform. A key idea in 

approaching optimality (following [RR99]) was preserving the unused entropy 
in a random step on an extractor. This lead to a (more complex) type of zig-zag 
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product, and from it, iterative constructions of such extractors. Translating 
this idea to the expander world turned out to be cleaner and more natural 
than in the extractor world. It led to our understanding of the role of the 

edge-name as a keeper of the unused entropy in a step of a standard random 

walk, and to the zig-zag product defined above. 

1.6. Extensions to the expander construction. The list below details the 
extensions and refinements we obtain to the basic expander construction out- 
lined above. All these will be part of the formal sections which follow. 

More explicit graphs. As mentioned above, this construction is not as effi- 
cient as we would like - computing neighborhoods in Gi takes time polynomial 
in Ni rather than in log Ni. As we show in Section 3, this is easily overcome 

by augmenting the iterations with another standard graph operation, namely 
taking tensor powers of the adjacency matrix. 

Describing graphs by "rotation maps." Another explicitness problem in 
the simple construction above is the assumption that the our D-regular graphs 
are given together with a proper D-coloring of the edges. This property is 
not preserved by the zig-zag product. To avoid it, we describe graphs more 

generally by their "rotation maps," and show how this description is explicitly 
preserved by all graph operations in our construction. 

Smaller degree. A naive and direct implementation of our graph product 
yields expanders whose degree is reasonable, but not that small (something 
under 1000). In Section 3.2, we show how to combine this construction, to- 

gether with one, constant-size cycle, to obtain an infinite family of explicit 
degree 4 expanders. Again, this combination uses the zig-zag product. In fact, 
using the replacement product described below, we obtain explicit degree 3 

expanders (which is the smallest possible). 

Choice of the base graph. Our expander construction requires an initial 
"constant size" base graph H as a building block. While exhaustive search 
can be used to find such an H (since it is constant size), for completeness we 
include two elementary explicit constructions (from [Alo86b, AR94]) which can 
be used instead. 

Better degree vs. eigenvalue relation. The best relationship between de- 

gree and second largest eigenvalue is obtained by Ramanujan graphs, in which 
the second eigenvalue is 2/D - 1/D. This equals the first eigenvalue of the 

D-regular infinite tree, and it is known that no finite D-regular graph can have 
a smaller second largest eigenvalue (cf., [Alo86a], [LPS88], [Nil91]). Remark- 
able graphs achieving this optimal bound were first constructed independently 
by [LPS88] (who coined the term Ramanujan graphs) and by [Mar88]. 
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Our constructions do not achieve this tight relationship. The zig-zag prod- 
uct, applied recursively to one fixed Ramanujan graph, will yield D-regular ex- 
panders of second largest eigenvalue 0(1/D1/4). A "partially derandomized" 
variant of our zig-zag product, given in Section 6, improves this relation and 
achieves second eigenvalue O(1/D1/3). 

A simpler product. Perhaps the most natural way to combine G1 with 
G2 when the size of G2 is the degree of G1 is simply replace every vertex of 
G1 with a copy of G2 in the natural way, keeping the edges of both graphs. 
This replacement product, which was often used for degree-reduction purposes 
(e.g., when G2 is a cycle the resulting graph has degree 3) turns out to enjoy 
similar properties of the zig-zag product: if both G1 and G2 are expanders, 
then so is their replacement product. Moreover, the proof is by a reduction- 
the zig-zag product is a subgraph of the cube (3rd power) of the replacement 
product, immediately giving an eigenvalue bound. 

1.7. Subsequent work: Connections with semidirect product in groups. 
Subsequent to this work, it was shown in [ALW01] that the zig-zag (and re- 

placement) products can be viewed as a generalization of the standard semidi- 
rect product of groups. This was used in [ALW01] to construct a family of 
groups which is expanding with one (constant size) set of generators, but is 
not expanding with another such set. The connection was further developed 
in [MW01] to produce new families of expanding Cayley graphs, via bounds 
on the number of irreducible representations of different dimensions in terms 
of the expansion. 

1.8. Organization of the paper. In Section 2, we give preliminary def- 
initions and basic facts. In Section 3, we define the zig-zag graph product, 
describe the construction of expanders, and state their properties. In particu- 
lar, it deals with the first four "extensions" listed in the previous subsection. 
In Section 4, we analyze the expansion of the zig-zag product. In Section 5, we 
discuss some ways to obtain the base graph used in our expander construction. 
In Section 6, we give two extensions to the basic zig-zag product. The first is 
a "derandomized" variant of our basic zig-zag product, which enjoys a better 
relationship between the degree and the expansion. The second is the simple, 
natural replacement product. 

2. Preliminaries 

2.1. Graphs and rotations. All graphs we discuss may have self-loops 
and parallel edges. They are best described by their (nonnegative, integral) 
adjacency matrix. Such a graph is undirected if and only if the adjacency 
matrix is symmetric. It is D-regular if the sum of entries in each row (and 
column) is D (so exactly D edges are incident to every vertex). 
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Let G be a D-regular undirected graph on N vertices. Suppose that the 
edges leaving each vertex of G are labeled from 1 to D in some arbitrary, but 
fixed, way. Then for v, w C [N] and i E [D], it makes sense (and is standard) 
to say "the ith neighbor of vertex v is w." In this work, we make a point to 
always keep track of the edge traversed to get from v to w. This is formalized 
as follows: 

Definition 2.1. For a D-regular undirected graph G, the rotation map 
RotG : [N] x [D] * [N] x [D] is defined as follows: RotG(v, i) = (w, j) if the 
ith edge incident to v leads to w, and this edge is the jth edge incident to w. 

This definition enables us to remove the simplifying assumption made 
in the introduction, which was that the label of an edge is the same from 
the perspective of both endpoints, i.e. RotG(v,i) = (w,j) =~ i = j. From 
Definition 2.1, it is clear that RotG is a permutation, and moreover RotG oRotG 
is the identity map. 

We will always view graphs as being specified by their rotation maps. 
Hence we call a family g of graphs explicit if for every G cE , RotG is com- 
putable in time poly(log N), where N is the number of vertices of G. That is, 
graphs in g are indexed by some parameters (such as the number of vertices 
and the degree, which may be required to satisfy some additional relations) 
and there should be a single algorithm which efficiently computes RotG for 
any G E G when given these parameters as an additional input. The notation 
poly() stands for a fixed (but unspecified) polynomial function in the given 
variables. We will often informally refer to an individual graph as explicit, as 
shorthand for saying that the graph comes from an explicit family. 

Our constructions will be iterative (or recursive), and will be based on 
a sequence of composition operations, constructing new graphs from given 
ones. The definition of these compositions (or products) will show how the 
rotation map of the new graph can be computed using "oracle access" to the 
rotation maps of the given graphs. (By giving an algorithm "oracle access" 
to a function f, we mean that the algorithm is given power to evaluate f on 
inputs of its choice at the cost of one time step per evaluation.) Given the 
time complexity of such a computation and the number of oracle calls made, 
it will be easy to compute the total time required by a recursive construction. 

2.2. Eigenvalues and expansions. The normalized adjacency matrix M of 
G is the adjacency matrix of G divided by D. In terms of the rotation map, 
we have: 

MU,V = {(i j) e [D]2 : RotG(U, i) = (, j)} 

M is simply the transition matrix of a random walk on G. By the D-regularity 
of G, the all-l's vector 1N = (1, 1,..., 1) E RN is an eigenvector of M of 
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eigenvalue 1. It is turns out that all the other eigenvalues of M have absolute 
value at most 1, and it is well known that the second largest eigenvalue of G is 
a good measure of G's expansion properties [Tan84], [AM85], [Alo86a]. We will 
use the following variational characterization of the second largest eigenvalue. 

Definition 2.2. A(G) denotes the second largest eigenvalue (in absolute 

value) of G's normalized adjacency matrix. Equivalently, 

(a Ma)| > \\Mc A(G)= max = max 
allN (0a, a) allIN \Ila\ 

Above, (., ) refers to the standard inner product in RN and IIa1 = /<(a, a). 
The meaning of A(G) can be understood as follows: Suppose 7r E [0, 1]N 

is a probability distribution on the vertices of G. By linear algebra, 7r can be 

decomposed as 7r = UN + 7r, where UN = IN/N is the uniform distribution 
and 7rl Il UN. Then MTr = UN + MT7r is the probability distribution on 
vertices obtained by selecting a vertex v according to 7r and then moving to 
a uniformly selected neighbor of v. By Definition 2.2, IIM7r'I < A(G) I Ir'l 1. 
Thus A(G) is a measure of how quickly the random walk on G converges to 
the uniform distribution. Intuitively, the smaller A(G) is, the better the ex- 

pansion properties of G. Accordingly, an (infinite) family Q of graphs is called 
a family of expanders if these eigenvalues are bounded away from 1, i.e. there 
is a constant A < 1 such that A(G) < A for all G E g. It was shown by 
Tanner [Tan84] and Alon and Milman [AM85] that this implies (and is in fact 

equivalent to [Alo86a]) the standard notion of vertex expansion: there is a con- 
stant e > 0 such that for every G E G and for any set S of at most half the 
vertices in G, at least (1 + E) . IS vertices of G are connected to some vertex 
in S. 

As mentioned in the introduction, we refer to a D-regular undirected graph 
G on N vertices such that A(G) < A as an (N, D, A)-graph. Clearly, achieving 
expansion is easier as the degree gets larger. The main goal in constructing ex- 

panders is to minimize the degree, and, more generally, obtain the best degree- 
expansion tradeoff. Using the probabilistic method, Pinsker [Pin73] showed 
that most 3-regular graphs are expanders (in the sense of vertex expansion), 
and this result was extended to eigenvalue bounds in [Alo86a], [BS87], [FKS89], 
[Fri91]. The best-known bound on the eigenvalues of random graphs is due to 
Friedman [Fri91], who showed that most D-regular graphs have second largest 
eigenvalue at most 2/ D/ + O((logD)/D) (for even D). In fact, the bound 
of 2/D - 1/D is the best possible for an infinite family of graphs, as shown 

by Alon and Boppana (cf. [Alo86a], [LPS88], [Nil91]). Graphs whose second 

largest eigenvalue meets this optimal bound are called Ramanujan graphs. It 
is easy to verify that this value is the largest eigenvalue of the random walk on 
the infinite D-regular tree. 

167 



OMER REINGOLD, SALIL VADHAN, AND AVI WIGDERSON 

While these probabilistic arguments provide strong existential results, ap- 
plications of expanders in computer science often require explicit families of 

constant-degree expanders. The first such construction was given by 
Margulis [Mar73], with improvements and simplifications by Gabber and 
Galil [GG81], Jimbo and Maruoka [JM87], Alon and Milman [AM85], and Alon, 
Galil, and Milman [AGM87]. Explicit families of Ramanujan graphs were first 
constructed by Lubotzky, Phillips, and Sarnak [LPS88] and Margulis [Mar88], 
with more recent constructions given by Morgenstern [Mor94]. The best eigen- 
values we know how to achieve using our approach are O(1/D1/3). 

2.3. Squaring and tensoring. In addition to the new zig-zag product, our 

expander construction makes use of two standard operations on graphs 
squaring and tensoring. Here we describe these operations in terms of rotation 

maps and state their effects on the eigenvalues. 
Let G be a D-regular multigraph on [N] given by rotation map RotG. 

The tth power of G is the Dt-regular graph Gt whose rotation map is given 
by RotGt (vo,(kl, k2,...kt)) = (Vt,(t, t_I,..., l)), where these values are 

computed via the rule (vi, £i) = RotG(vi-l, ki). 

PROPOSITION 2.3. If G is an (N, D, A)-graph, then Gt is an (N, Dt, At)- 
graph. Moreover, RotGt is computable in time poly(log N, log D, t) with t oracle 

queries to RotG. 

Proof. The normalized adjacency matrix of Gt is the tth power of the 
normalized adjacency matrix of G, so all the eigenvalues also get raised to the 
tth power. O 

Let G1 be a Di-regular multigraph on [N1] and let G2 be a D2-regular 
multigraph on [N2]. Define the tensor product G1 G2 to be the D1 D2-regular 
multigraph on [N1] x [N2] given by RotG10G2((v, ), (i,j)) = ((v', w'), (i',j')), 
where (v', i') = RotG1 (v, i) and (w', j') = RotG2 (w, j). In order to analyze this 
construction (and our new graph product), we need some concepts from linear 

algebra. For vectors a C IRN1 and 3 I RN2, their tensor product is the vector 
a 0 d E IRIN1'N2 whose (i,j)th entry is ai ' j. If A is an N1 x N1 matrix and 
B is an N2 x N2 matrix, then there is a unique N1N2 x NiN2 matrix A ( B 

(again called the tensor product) such that (A 0 B)(a (3) = (Aa) 0 (B/3) for 
all a, p. 

PROPOSITION 2.4. If G1 is an (N1, D1, A1)-graph and G2 is an (N2, D2, A2)- 
graph, then G1 0 G2 is an (N1 · N2, D1 · D2, max(A1, A2))-graph. Moreover, 
RotGlO G2 is computable in time poly(log N1N2, log D1D2) with one oracle query 
to RotG1 and one oracle query to RotG2. 
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Proof. The normalized adjacency matrix of G1 0 G2 is the tensor product 
of the normalized adjacency matrices of G1 and G2. Hence its eigenvalues are 
the pairwise products of eigenvalues of G1 and G2. The largest eigenvalue is 
1 1, and the second largest eigenvalue is either 1 A2 or A1 · 1. 

3. The zig-zag product and the expander construction 

In the introduction, we described how to obtain a family of expanders by 
iterating two operations on graphs -squaring and the new "zig-zag" product. 
That description used a simplifying assumption about the edge labeling. In 
terms of rotation maps, the assumption was that Rot(v, i) = (w, j) = i = j. 
In this section, we describe the construction in terms of arbitrary rotation 

maps and prove its properties. The expander construction given here will also 
use tensoring to improve the efficiency to polylogarithmic in the number of 
vertices. This deals with the first two items in the "extensions" subsection 
of the introduction, which are summarized in Theorem 3.2. The third item, 
obtaining expanders of degree 4, will follow in Corollary 3.4. The analysis of 
the zig-zag product is deferred to the following section. 

3.1. The zig-zag graph product. We begin by describing the new graph 
product in terms of rotation maps. Let G1 be a D1-regular multigraph on [N1] 
and G2 a D2-regular multigraph on [D1]. Their zig-zag product is a D2-regular 

multigraph G1i(G2 on [N1] x [D1]. We view every vertex v of G1 as being blown 

up to a "cloud" of D1 vertices (v, 1),..., (v, D1), one for each edge of G1 leaving 
v. Thus for every edge e = (v, w) of G1, there are two associated vertices of 

G1 (G2 -(v, k) and (w, £), where e is the kth edge leaving v and the fth 

edge leaving w. Note that these pairs satisfy the relation (w, £) = RotG1 (v, k). 
Since G2 is a graph on [D1], we can also imagine connecting the vertices of 
each such cloud using the edges of G2. Now, the edges of G1 (G2 are defined 

(informally) as follows: we connect two vertices (v, k) and (w, £) if it is possible 
to get from (v, k) to (w, £) by a sequence of moves of the following form: 

1. Move to a neighboring vertex (v, k') within the initial cloud (using an 

edge of G2), 

2. Jump across clouds (using edge k' of G1) to get to (w, £e), 

3. Move to a neighboring vertex (w, £) within the new cloud (using an edge 
of G2). 

To make this precise, we describe how to compute the RotG1zG2 given RotG1 
and RotG-2 
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Definition 3.1. If G1 is a D1-regular graph on [N1] with rotation map 
RotG1 and G2 is a D2-regular graph on [D1] with rotation map RotG2, then 
their zig-zag product G1iG2 is defined to be the D2-regular graph on [N1] x [Di] 
whose rotation map RotG1©G2 is as follows: 

RotG1cG2((v, k), (i, j)) 

1. Let (k',i') = RotG2(k, i), 

2. Let (w, C') = RotG (v, k'), 

3. Let (£, jl) = RotG2 (, j), 

4. Output ((w, C), (j', i')). 

The important feature of this graph product is that G1 )G2 is a good 
expander if both G1 and G2 are, as shown by the following theorem. 

THEOREM 3.2. If G1 is an (N1, D1, A1)-graph and G2 is a (D1,D2, A2)- 
graph, then G1i G2 is a (NI - D1, D2, f(A1, 2))-graph, where f(A1,A2) < 

A1 + A2 + A2 and f(A1,A2) < 1 when A1,A2 < 1. Moreover, RotG1OG2 can 

be computed in time poly(log N, log D1, log D2) with one oracle query to RotGc 
and two oracle queries to RotG2. 

Stronger bounds on the function f(Ax, A2) are given in Section 4. Before 

proving Theorem 3.2, we show how it can be used to construct an infinite 

family of constant-degree expanders starting from a constant-size expander. 

3.2. The recursion. The construction is like the construction in the intro- 

duction, except that we use tensoring to reduce the depth of the recursion and 

thereby make the construction run in polylogarithmic time (in the size of the 

graph). 
Let H be a (D8, D, A)-graph for some D and A. (Various methods for 

obtaining such an H are described in §5.) For every t > 1, we will define a 

(D8t, D2, At)-graph Gt. G1 is H2 and G2 is H H. For t > 2, Gt is recursively 
defined by 

G= (Gr-ll ®G ®I H. 

THEOREM 3.3. For every t > 0, Gt is an (D8t, D2, At)-graph with At = 

A+O(A2). Moreover, RotGt can be computed in time poly(t, log D) with poly(t) 
oracle queries to RotH. 

Proof. A straightforward induction establishes that the number of vertices 
in Gt is D8t and that its degree is D2. To analyze the eigenvalues, define 

Lt = max{AX,..., At}. Then we have Ut < max{t_l , 1 2- + A + A2} for all 
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t > 2. Solving this recurrence gives /ut < A + O(A2) for all t. For the efficiency, 
note that the depth of the recursion is at most log2 t and evaluating the rotation 
maps for Gt requires 4 evaluations of rotation maps for smaller graphs, so the 
total number of recursive calls is at most 410g2 t t2. 

In order for Theorem 3.3 to guarantee that graphs {Gt} are expanders, 
the second largest eigenvalue A of the building block H must be sufficiently 
small (say, A < 1/5). This forces the degree of H and hence the degree of 
the expander family to be rather large, though still constant. However, by 
zig-zagging the family {Gt} with a cycle, we can obtain a family of degree 
4 expanders. More generally, we can use this method convert any family of 
odd-degree expanders into a family of degree 4 expanders: 

COROLLARY 3.4. For every A < 1 and every odd D, there exists a A' < 1 
such that if G is an (N, D, A)-graph and C is the cycle on D vertices, then 
GOC is a (ND, 4,A')-graph. 

Proof. As with any connected and nonbipartite graph, A(C) is strictly less 
than 1 for an odd cycle C (though A(C) -- 1 as D -- oo). Thus, the corollary 
follows from Theorem 3.2. C1 

4. Analysis of the zig-zag product 

This section has two subsections. In the first, we give the basic (subop- 
timal) bound of Theorem 3.2. This bound uses only the intuitive ideas of the 
introduction, and suffices for the construction of the previous section. In the 
next, we state and prove a tighter eigenvalue bound. It uses extra information 
about the zig-zag product (which is less intuitive). It also gives more informa- 
tion about the worst interplay between the two extreme cases studied in the 
basic analysis, and may hopefully shed a bit of light on the structure of the 
eigenvectors of the zig-zag product. 

4.1. The basic eigenvalue bound. Now we prove Theorem 3.2. Recall the 
intuition behind the zig-zag product. We aim to show that for any (nonuni- 
form) initial probability distribution 7r on the vertices of G1 ( G2, taking a 
random step on G1 ()G2 results in a distribution that is more uniform. We 
argued this intuitively in the introduction, by considering two extreme cases, 
based on the conditional distributions induced by 7r on the N1 "clouds" of D1 
vertices each: one in which these conditional distributions are far from uni- 
form, and the second in which they are uniform. The actual linear algebra proof 
below will restrict itself to these two cases by decomposing any other vector 
into a linear combination of the two. Also, the argument in the introduction 
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was not symmetric in the first and second steps on the small graph. Using the 
variational definition of the second largest eigenvalue, we get a cleaner analysis 
than by following that intuition directly. 

Let M be the normalized adjacency matrix of G10 G2. According to Defi- 
nition 2.2, we must show that, for every vector a E R1N',D1 such that a I 1N1D1i, 

|(Ma, a)| is smaller than (a, a) by a factor f(A1,A2). For intuition, a should 
be thought of as the nonuniform component of the probability distribution 7r 
referred to above, i.e. 7r = UN1D1 + ca, where UNlD1i = 1ND/N1D1N is the 
uniform distribution on [NID1]. Thus, we are showing that 7r becomes more 
uniform after a random step on G1 )G2. 

For every v e [N1], define a, E RID1 by (aC)k = Cvk. Also define a 

(linear) map C: IiN1D'D IRN1 by (Ca)v = Dl ark Thus, for a probability 
distribution 7r on the vertices of G1 (G2, 7r, is a multiple of the conditional 
distribution on "cloud v" and CT7 gives the marginal distribution on set of 
clouds. By definition, a = Ev ev ® Ov, where ev denotes the vth standard basis 
vector in RIN,. By basic linear algebra, every av can be decomposed (uniquely) 
into av = alv +- av where al is parallel to 1D1 (i.e., all of its entries are the 

same) and av± is orthogonal to 1D1 (i.e., the sum of its entries are 0). Thus, 
we obtain a decomposition of a: 

a = ev X( av 
v 

C= E eV X l + E e0 ce) °l 
V V v v 

def I l+ 

This decomposition corresponds to the two cases in our intuition: all 

corresponds to a probability distribution on the vertices of G1 (G2 such that 
the conditional distributions on the clouds are all uniform. al corresponds to 
a distribution such that the conditional distributions on the clouds are all far 
from uniform. Another way of matching all with the intuition is to note that 
all = Ca 0 lD/ID1. Since a and a1l are both orthogonal to 1N1D1, so is all 
and hence also Ca is orthogonal to 1N1. 

To analyze how M acts on these two vectors, we relate M to the nor- 
malized adjacency matrices of G1 and G2, which we denote by A and B, 
respectively. First, we decompose M into the product of three matrices, corre- 

sponding to the three steps in the definition of G1 ®G2's edges. Let B be the 

(normalized) adjacency matrix of the graph on [N1] x [D1] where we connect 
the vertices within each cloud according to the edges of G2. B is related to 
B by the relation B = IN1 0 B, where IN1 is the N1 x N1 identity matrix. 
Let A be the permutation matrix corresponding to RotG1. The relationship 
between A and A is somewhat subtle, so we postpone describing it until later. 
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By the definition of G1 ©G2, we have MA = BAB. Note that both B and A 
are symmetric matrices, due to the undirectedness of G1 and G2. 

Recall that we want to bound I(Ma, ca)|/(a, a). By the symmetry of B, 

(1) (Ma, a) = (BABc, a) = (ABc, Ba). 

Now note that Ball = all, because all = Ca o lo1/D1, B = IN1 ® B, and 
BoID = 1D1. This corresponds to the fact that if the conditional distribution 
within each cloud is uniform, then taking a random G2-step does nothing. 
Hence, Bca = B(all + al) = all + Bal. Substituting this into (1), we have 

(2) (Maa, a) = (A(all + BaL), all + Bal). 

Expanding and using the fact that A is length-preserving (because it is a 
permutation matrix), we have 

(3) I (M a, a) l (Aall, all) + 211all ll. IBa'l1 + IIa 112. 

Now we apply the expansion properties of G1 and G2 to bound each of 
these terms. First, we bound IIBa'±ll, which corresponds to the intuition that 
when the conditional distributions within the clouds are far from uniform, they 
become more uniform when we take a random G2-step. 

Claim 4.1. IBa'l11 < A2. Ia'l . 

Proof of claim. 

Ba i= ev ev®av 

= Zev ) Ba°v 
V 

By the expansion of G2, IIBa,v|ll _ A2 \\aIIvI for all v. Hence, IjBa'lI < 
A2 -IIla Il. 

Next, we bound (Aall allll), which corresponds to the intuition that when 
the conditional distribution within each cloud is uniform, the jump between 
the clouds makes the marginal distribution on clouds themselves more uniform. 

Claim 4.2. (Aall,all)l < (all, all). 

Proof of claim. To prove this, we must first relate A to A. Recall that 
when k is uniformly distributed, RotG1 (v, k) gives a pair (w, £) where w is a 
uniformly selected neighbor of v. Similarly, if ev E IN1 is the vth standard 
basis vector, then Aev gives the uniform distribution over the neighbors of v. 
This similarity is captured by the formula CA(ev 0 1Dl/D1) = Aev for all v. 
(Tensoring ev with lD1/D1 corresponds to taking the uniform distribution 
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over k and applying C corresponds to discarding t and looking just at w.) 
Because the ev's form a basis, this formula extends to all vectors 3 E lINl: 

CA( 3® 1D1 /D) = A3. Applying this formula to all = Ca 1D D1D, we have 

CA(cll) = ACa. Thus, 

(Aafl,a11) = (Acl:Ca l 1D1)/D1 
= (CAat, Cca)/D 
= (ACa,Ca)/D1. 

Recalling that Ca is orthogonal to 1N,, we may apply the expansion of G1 to 
obtain: 

I(Aal,all) < A1 (Ca, Ca)/Di 
= A1' (Ca 0 1D1, Ca 1D1)/D2 
= ) o1'(Ol,) E). 

Substituting the bounds of Claim 4.1 and 4.2 into (3), we have: 

(4) I(Ma, a) l < AX1 Ia"ii2 + 2A2 I1a ill . I a1 ll + A2 l1112. 

If we let p = Ilellll/ lall and q = /llll/llell, then p2 + q2 = 1, and the 
above expression can be rewritten as: 

(Ma,a)_ <. Ai p222 +22 pq + A2 q2 < Al +A2 + A2. 
(a, a) 

This shows that we can take f(A1, A2) < A1 + A2 + A2. It remains to show 
that we can set f(A1,A2) < 1 as long as A1,A2 < 1. We consider two cases, 
depending on the length of Haol . First, suppose that a1 II < 1-1' 

||1 ila Then, 
from (4), we have 

({Ma,a)l < Al 11*a2+2A2. (1- Al) Ia2 

I 21AA2l 
+ (A2 . 

1 )2 
llI2<(l- 

1- 1 
) 11a2 

Now suppose that lae ll > A l ||lal|. Notice that B3a is orthogonal to 

all: (Ba',allI) = (a'l,Ball) = (a', all) = 0. Using this, we can bound (2) as 
follows: 

( (M, ot) = (A~(ot 11+ Bol) 3 all + Bo3l) l < 11otll + Bo l 112 = o11112 + IIB 11 2 |(Ma,a)| = 1(A(a +Ba'), all +Ba)l < 1a + Ia'\2 - l|2 + 2±Ba'l2 

< |la|12 _- al12 + A. 11a112 < 11a112 - (1 - A2) (1-- 1) 1a2 
Thus ,2 3A2 c tk 

Thus, we can take 

f(A1, 2)< 1 -min{ -1 (1- A1)2(1-A2) } 
/A.92 1.9 
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4.2. Improved analysis of the eigenvalue. In this subsection we state and 

prove an improved upper bound on the second largest eigenvalue produced by 
the zig-zag product. 

THEOREM 4.3 (Thm. 3.2, improved). If G1 is an (N1, D1, A1)-graph and 
G2 is a (D1, D2, A2)-graph, then G1 ()G2 is a (N1 D D1, f(Ai, A2))-graph, 
where 

f(A1, A2) = )A (1 - + 1 - 2)2A2 + 4A2 2 2 2 ( 1 221 

Although the function f(A1, A2) looks ugly, it can be verified that it has 
the following nice properties: 

1. f(A, 0) = f(0, A) = A and f(A, 1) = f(1, A) = for all A E [0, 1]. 

2. f(A1, A2) is a strictly increasing function of both A1 and A2 (except when 
one of them is 1). 

3. If Ai < 1 and A2 < 1, then f(A, A2) < 1. 

4. f(A1, A2) < Ai + A2 for all AX, A2 E [0,1]. 

Proof. The proof proceeds along the same lines as the proof of Theo- 
rem 3.2, except that we will use a geometric argument to directly bound (2) 
rather than first passing to (3). That is, we must bound (using the same 
notation as in that proof) 

(Ma, a) _ (A(all + Ba), all + Bca) 

(a, a) 1all + a1 112 

The key observation is: 

Claim 4.4. A is a reflection through a linear subspace S of RIN1D1. Hence, 
for any vector v, (Av, v) = (cos20). lv l2, where 0 is the angle between v and S. 

Proof of claim. By the symmetry of A, we can decompose RN1D1 into the 
sum of orthogonal eigenspaces of A. Since A2 = IN1D1, the only eigenvalues of 
A are ±1. Take S to be the 1-eigenspace of A. 

Thus, the expression we want to bound is 

I(Ma,a) Iall + Bca 112 os2q$ 
(' l = Icos201 = icos201 . 

(a, a) l|all + a 11-a2 cos2+/ 

where 0 is the angle between all + BO1 and S, X E [0, 7r/2] is the angle between 
cll and all + ca1, and ¢' E [0, 7r/2] is the angle between all and all + Bal. 
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If we also let 4 be the angle between all and S, then we clearly have 0 E 

[4 - ', + 0']. 
Now we translate Claims 4.1 and 4.2 into this geometric language. Claim 4.1 

constrains the relationship between q' and X by 

tan -' IIBaol I 
tan 1o'llH 

- 

Claim 4.2 says Icos2| < A1. For notational convenience, we will denote the 
exact values of (tan 0')/(tan 0) and Icos21| by U2 and 1, respectively. We will 
work with these values until the end of the proof, at which point we will upper 
bound them by A2 and A1. 

To summarize, we want to maximize 

(5) 1cos201 cos20 
cos2o/ 

over the variables 0, ¢, /', and 4), subject to the following constraints: 

1. O,qO', (E [0,7r/2]. 

2. 0 E [_ , - 0', + 0'].2 

3. tan '/tan = -/2. 

4. Icos2| = ML. 

There are two cases, depending on whether Icos2xl ever achieves the value 1 
in the interval [4 - 0', I) + 0']. 

Case I. q' < min{), 7r/2 - >}. Then 

1cos201 = max{Icos2() + O') , Icos2( - ,')|} 
- |cos2. cos2'l| + | sin 2 . sin 2'1. 

After some trigonometric manipulations, we have 

COS20/ 2 2 csO] csq=!(-Tcs2/ + Tcos201 cos2+ (1 + )co2co2] 122 sin 2 sin 2 1. 

The choice of q which maximizes this is to have (cos2q, sin 2q) be a unit vector 
in the direction of (±(1 +- b2)cos2), 2/U2 sin 2k); thus 

cos201 
cos 2 

< - A2)1cos2)| + + /(1 + 2)2coS22 + 4l 2 sin2 24 
Ccos2q, 2 2 2 s 2 

= (1 - 2) + 1 /(1 + 2)2 2+ 42 (1 - 2). 

2We do not require 0 E [0, 7r/2] so that we do not have to worry about "wraparound" in the 
interval [P - O', 0 -+ +']. Adding a multiple of 7r/2 to 0 does not change the value of (5). 
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Case II. L ' > min{¢, 7r/2 - 4}. In this case, we cannot obtain any 
nontrivial bound on lcos201, so, after some trigonometric manipulations, the 

problem is reduced to bounding: 

(6) 1cs201. cos2 cos2 2 
cos20 

' 
< s2' = 2 + (1 - 2)cos2¢. 

The condition ' > min{(, 7r/2 - 4)} implies that cos2q' < (cos2| = ,U1. After 
some trigonometric manipulations, we have 

cos2b' - (1 + p2)os2q - P2 (1 - t2)cos2 + i2 

and the condition cos2q' < I1 is equivalent to 

cos22 2b < 
M2 

(1 --l) -+ 2(1 -+-1) 

Substituting this into (6) and simplifying, we conclude that 

cos2¢ 2/2 
cos201 * o2 < - 

It can be verified that the bound obtained in Case I is an increasing 
function of Il and 12 and is always greater than or equal to the bound in 
Case II. Therefore, replacing ,u1 and u2 by A1 and A2 in the Case I bound 

proves the theorem. ] 

5. The base graph 

Our construction of an infinite family of expanders in Section 3.2 requires 
starting with a (D8, D,A)-graph H (for a sufficiently small A, say < 1/5). 
Since D is a "constant," such a graph can be found by exhaustive search 

(given that one exists, which can be proven by (nontrivial) probabilistic ar- 

guments [Alo86a], [BS87], [FKS89], [Fri91]). However, for these parameters, 
there are simple explicit constructions known. We describe two of them below. 
The first is simpler and more intuitive, but the second yields better parameters. 

5.1. The affine plane. The first construction is based on the "projective 
plane" construction of Alon [Alo86b], but we instead use the affine plane in 
order to make N exactly D2 and then use the zig-zag product to obtain a 

graph with N = D8. For a prime power q = pt, let Fq be the finite field of size 

q; an explicit representation of such a field can be found deterministically in 
time poly(p, t) [Sho90]. We define a graph APq with vertex set F2, and edge 
set {((a, b), (c, d)) : ac = b + d}. That is, we connect the vertex (a, b) to all 

points on the line La,b = {(x, y): y = ax - b}. (Note that we have chosen the 
sign of b to make the graph undirected.) 
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LEMMA 5.1. APq is an (q2, , 1//q))-graph. Moreover, a rotation map for 
APq can be computed in time poly(log q) given a representation of the field Fq. 

Proof. The expansion of APq will follow from the fact the square of APq 
is almost the complete graph, which in turn is based on the fact that almost 
all pairs of lines in the plane F2 intersect. Let M be the q2 x q2 normalized 
adjacency matrix of APq; we will now calculate the entries of M2. The entry of 
M2 in row (a, b) and column (a', b') is exactly the number of common neighbors 
of (a, b) and (a', b') in APq divided by q2, i.e., ILa,b n La,b I/q2. If a 7 a', then 

La,b and La',b' intersect in exactly one point. If a = a' and b / b', then their 
intersection is empty, and if a = a' and b = b', then their intersection is of size 
q. Thus, if we let Iq denote the q x q identity matrix and Jq the q x q all-i's 
matrix, we have 

/qIq Jq ... Jq \ ( qlq Jq JqN 

M2 1 Jq qlq Jq Iq qIq + (Jq - Iq) 0 Jq 
2q2 q : . Jq q 

\ Jq Jq qlq I 

Now we can calculate the eigenvalues explicitly. Jq has eigenvalues q (multi- 
plicity 1) and 0 (multiplicity q - 1). So (Jq - Iq) 0 Jq has eigenvalues (q - 1) q, 
-1 q, and 0. Adding Iq 0 qlq increases all these eigenvalues by q, and then 
we divide by q2. Hence the eigenvalues of M2 are 1 (multiplicity 1), 0 (multi- 
plicity q - 1), and 1/q (multiplicity (q - 1) . q). Therefore, the second largest 
eigenvalue of M has absolute value 1//f. 

A rotation map for APq is given by 

((t/a,t - b),t) if a = andt 0, 
Rotq((a, b), t) = ((t,-b), ) a t O 

W I -b), a) if a = 0 or t = 0, 
where a, b, t E IFq. D 

Now, define the following graphs inductively: 

AP1 = APq APq 

APq1 = AP (APq. 

From Proposition 2.4 and Theorem 3.2, we immediately deduce: 

PROPOSITION 5.2. APq is a (q2(i+l),q2,0(i//F))-graph.3 Moreover, a 
rotation map for AP1 can be computed in time poly(i, log q) given a represen- 
tation of IFq. 

3The hidden constant in O(i/lJq) can be reduced to 1 using the improved analysis of the zig-zag 

product in Theorem 4.3. 
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Taking i = 7 and a sufficiently large q gives a graph suitable for the 

expander construction in Section 3.2. 

5.2. Low-degree polynomials. The graphs we describe here are derived 
from constructions of Alon and Roichman [AR94], which are Cayley graphs 
derived from the generator matrix of an error-correcting code. In order to give 
a self-contained presentation, we specialize the construction to a Reed-Solomon 
code concatenated with a Hadamard code (as used in, e.g. [AGHP92]). 

For a prime power q and d E N, we define a graph LDq,d on vertex set 
Fd+l with degree q2 For a vertex a E Fqd+1 and x,y E Fq, the the (x y)th q q q 

neighbor of a is a + (y, yx, yx2,... yxd). 

PROPOSITION 5.3. LDq,d is a (qd+l, q2, d/q)-graph. Moreover, a rotation 

map for LDq,d can be computed in time poly(logq, d) given a representation 
of Iq. 

As above, taking d = 7 and sufficiently large q gives a graph suitable 
for our expander construction. These graphs are better than those of Propo- 
sition 5.2 because the the eigenvalue-degree relationship is the optimal A = 

O(1/lD/) (as q grows), which implies an eigenvalue of O(1/D1/4) for the fam- 

ily constructed in Theorem 3.3. 

Proof. To simplify notation, let F = Fq. Let M be the qd+l x qd+l nor- 
malized adjacency matrix of LDq,d. We view vectors in Cqd+ as functions 

f : Fd+l C. We will now explicitly describe the eigenvectors of M. Let p be 
the characteristic of F, let ( = e2i"/P be a primitive pth root of unity, and let 
L : F -, Fp be any surjective Fp-linear map. (For simplicity, one can think of 
the special case that p = q and L is the identity map.) 

For every sequence a = (ao,...,ad) E Fd+l, define the function Xa 
Fd+l - C by Xa(b) = (L(aibi). Clearly, Xa(b + c) = Xa(b)Xa(C) for any 
b,c E Fd+l. Moreover, it can be verified that the {Xa} are orthogonal under 
the standard inner product (f,g) = b f(b)g(b)*, and thus form a basis for 
Cqd+l . Hence, if we show that each Xa is an eigenvector of M, then they are 
all the eigenvectors of M. This can be done by direct calculation: 

(MXa)(b) = E bc Xa(C) 
cqcEd+1 

- 2 E Xa(b + (y, yx,, ,yxd)) 
x,yEF 

(x,YEIF Xa(y, yx,. .., Yx) a(b) 

def = Aa Xa(b). 
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Thus, Xa is an eigenvector of M with eigenvalue \a and all eigenvectors 
of M are of this form. So we simply need to show that )AaI < d/q for all but 
one a E Fd+l. To do this, note that 

_a = Xa((I) Ux) ** * )x)) =I2d (L(y'pa(x)) Aa 2 Xa((y' yx.... " YX)) - E 
x,yEF x,yEF 

where pa(x) is the polynomial ao + alx +... + adxd. When x is a root of Pa, 
then (L(ypa(x)) = 1 for all y; hence x contributes q/q2 = 1/q to Aa. When x 
is not a root of pa(x), ypa(x) takes on all values in F as y varies, and hence 

(L(ypa(x)) varies uniformly over all pth roots of unity. Since the sum of all pth 
roots of unity is 0, these x's contribute nothing to Aa. When a / O, Pa has at 
most d roots, so lAal < d/q. O 

6. Variants on the zig-zag theme 

The two subsections of this section contain two variants of the basic zig- 
zag product. The first is aimed at improving the relation between the degree 
and the eigenvalue bound. The second is aimed at simplifying the product, at 
the cost of deteriorating this relationship. 

6.1. A "derandomized" zig-zag product. In this section we provide a vari- 
ant of our original zig-zag product, which achieves a better relationship between 
the degree and the expansion of the resulting graph. The term "derandomized" 
will become clearer when we define it. 

Recall that the optimal second-largest eigenvalue for an infinite family 
of D-regular graphs is 0(1/D1/2), and families of graphs meeting this bound 

(with the right constant) are referred to as Ramanujan. A basic question is how 
close can we come to this optimal bound using our techniques. Starting with a 
constant-size Ramanujan graph (or the graphs of §5.2), our basic construction 
of Theorem 3.3 achieves a second-largest eigenvalue of O(1/D1/4) for the family 
of expanders generated.. 

Here, we define a variant of the zig-zag product, which makes more ef- 
ficient use of the expansion of the small graph. Using the new product in 
our iterative construction (of §3.2) with an initial constant-size Ramanujan 
graph or even the graphs of Proposition 5.3, we obtain a second-largest eigen- 
value of O(1/D1/3) for the family of expanders generated. It is an interesting 
open problem to construct families of graphs achieving the optimal eigenvalue 
O(1/D1/2) using a similar graph product. 

We now turn to the formal definition of the new zig-zag product. It will 
have two "zig" moves and two "zag" moves, but they will not be independent. 
The second "zig" and the first "zag" will use the same random bits! 
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Definition 6.1. Let G1 be a D1-regular graph on [N1] with rotation map 
RotG1 and let G2 be a D2-regular graph on [D1] with rotation map RotG2. 

Suppose that for every i E [D2], Rot2(., i) induces a permutation on [D1].4 
Then the modified zig-zag product of G1 and G2 is defined to be the D3-regular 
graph G1 ('G2 on [N1] x [D1] whose rotation map RotGl®'G2 is as follows: 

RotGi,G2 ((V,k) ) (h, i,j)) : 

1. Let (k', h') = Rot2 (k, h). 

2. Let (k", i') = RotG2(k', i). 

3. Let (w, e") = RotGl (v, k"). 

4. Find the unique £' E [D1] such that (", i") = RotG2(e',i) for some i". 

(f' exists by the assumption on RotG2.) 

5. Let (e, j') = RotG2 (E, j). 

6. Output ((w, e), (j', i, h')). 

Again, in this graph product we do two random steps on the small graph 
in both the zig and the zag parts. However, to save random bits (i.e., decrease 
the degree) we use the same random bits for the second move of the zig part 
and the first move of the zag part. Thus the degree of the new graph is D3. 
However, we will show that the bound on the eigenvalue will be as if these 
moves were independent. This proof will follow the lines of the basic analysis 
of the original zig-zag product. 

THEOREM 6.2. If G1 is an (N1, D1, A1)-graph and G2 is a (D1, D2, A2)- 
graph, then GI ('G2 is a (NI D1, D3, A1 + 2A2)-graph. Moreover, RotG1/'G2 
can be computed in time poly(log N, log D1, D2) with one oracle query to RotG1 
and D2 + 2 oracle queries to RotG2. 

Proof. We use the same notation as in the proof of Theorem 3.2. Like 
there, we need to bound (Ma, a)I/(a, a), where M is the normalized adjacency 
matrix of GI ()'G2 and ca I 1N1D1. Let Bi be the D1 x D1 permutation matrix 
induced by Rot2(., i), and let Bi = IN1 0 Bi. Then 

1 D2 

B =D 
D2i=l 

4By this we mean that the function fi(x) = "the first component of Rot2 (x,i)" = 

"the ith neighbor of x" is a permutation for every i. 
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Note that the normalized adjacency matrix corresponding to Steps 2-4 in the 
definition of G1 ('G2 is given by 

M8=DE BiABT, 
i 

where BT is the transpose (equivalently, inverse) of Bi. Thus, M = BM'B. 
The main observation is that not only does Bol = ctl (as we used in the original 
analysis), but also BTol = cI for every i (because Bi is a permutation matrix). 
Hence, 

M'o = - B ABiAcT° - ZBiAoll = BAao . 

D2i D2 

Applying this (and the symmetry of B and M'), we get 

(Ma, c) = (ail ,all) + 2(Mol, ,ol) + (Mo'l aol) 

= (A ,ll ll) + 2(Aall, B2ctl) + (M'Boa , Bol). 

Being the normalized adjacency matrix of an undirected, regular graph, M' 
has no eigenvalues larger than 1 and hence does not increase the length of any 
vector. Using this together with Claims 4.1 and 4.2, we have 

I(Mo,oa)I < I(Aall, +all) + 211aull IIB2oII + 2IIB11\2 

< 1 A |ll |2 + 2A2 > ||all| . lll + XA2 
* HaLo2 

As in the the proof of Theorem 3.2, using the fact that Ilc 112 + 11 11 2 = 2 , 112 
yields the desired bound. O 

6.2. The replacement product. In this section, we describe an extremely 
simple and intuitive graph product, which shares similar properties to the zig- 
zag product. Namely, when taking the product of two expanders, we get a 

larger expander whose degree depends only on that of the smaller graph. Here 

simplicity is the important feature, and the expansion quality is not as good as 
above. This product is so natural that it was used in various contexts before. 

Indeed, Gromov [Gro83] even estimates the second eigenvalue of an iterated 

replacement product of the graph of the Boolean hypercube with smaller copies 
of itself. (Of course, in this very special case the outcome is not expanding, 
since the cube is not.) Our proof of its expansion will be a simple reduction to 
the expansion properties of the zig-zag product. However, one can also prove 
it directly in a manner similar to the proof of Theorem 3.2 (and thereby obtain 
a stronger bound). 

Assume (as in the basic zig-zag product) that G1 is a Di-regular graph 
on [N1] and G2 is a D2-regular graph on [D1]. A natural idea is to place a 
"copy" (or "cloud") of G2 around each vertex of G1, maintaining the edges of 
both. More precisely, every vertex will be connected to all its original neighbors 
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in its cloud, as well as to one vertex in the neighboring cloud it defines. For 

example, if G1 is the n-dimensional Boolean cube graph, and G2 is the cycle on 
n vertices, then the resulting graph is the so-called cube connected cycle, which 
used to be a popular architecture for parallel computers. Note that in this 
example the small graph had degree 2, and the product graph had degree 3. 
In general, the resulting graph would have degree D2 + 1. In terms of rotation 

maps, this product is defined as follows. 

Definition 6.3. If G1 is a D1-regular graph on [N1] with rotation map 
RotG1 and G2 is a D2-regular graph on [D1] with rotation map RotG2, then 
their replacement product G1 (G2 is defined to be the (D2 + 1)-regular graph 
on [N1] x [D1] whose rotation map RotG1aG2 is as follows: 

RotG1OG2((v, k), i): 
1. If i < D2, let (m,j) = RotG2(k,i) and output ((v, m),j). 
2. If i = D2 + 1, output (RotGl (v, k), i). 

The expansion properties of the replacement product are given in the next 
theorem, relating it to those of the zig-zag product. 

THEOREM 6.4. If G1 is an (N1, D1, A)-graph and G2 is a (D1, D2, A2)- 
graph, then G1 (G2 is a (N1 · D1, D2 + 1, g(A, A2, D2))-graph, where (using 
the function f from Theorems 3.2 or 4.3) 

g(1A, A2, D2) < (p + (1 - p)f(A, A2))1/3 , 

and p = D2/(D2 + 1)3. In particular, g(Al,A2,D2) < 1 when A1,A2 < 1. 

Moreover, RotG1®G2 can be computed in time poly(log N, log D1, log D2) with 
one oracle query to RotG1 or RotG2. 

Proof. The idea of the proof is that the graph of the zig-zag product is a 

regular subgraph of the cube of the graph of the replacement product. Let M 
denote the normalized adjacency matrix of G1 (G2. As in the proof of The- 
orem 3.2, we let A, B respectively denote the normalized adjacency matrices 
of G1, G2, and define their "liftings" A, B in the same way. By inspection, we 
have M = (A + D2B)/(D2 + 1). The key observation is that 

M3 (A + D2B))3 a3- (A+D21)3 = pBAB + (1 - p)C, 

where BAB is the normalized adjacency matrix of G1GG2, C is the normalized 
adjacency matrix of an undirected, regular graph (and in particular does not 
increase the length of any vector), and p = D2/(D2 + 1)3. As eigenvalues of 
powers of matrices are the respective powers of the original eigenvalues (see 
Proposition 2.3), we have 

(A1, A2) < (p + (1 - p)f(Ai, A2))1/3. 
- 
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Thus, for "constant" degrees D2 the replacement product indeed trans- 
forms two expanders into a larger one. As in Corollary 3.4, we can use this to 

get degree 3 expanders. 

COROLLARY 6.5. For every A < 1 and every odd D, there exists a A' < 1 
such that if G is an (N, D, A)-graph and C is the cycle on D vertices, then 
G®C is a (ND,3, A')-graph. 

To make the expansion properties in Theorem 6.4 independent of how 

large D2 is, we now slightly modify the replacement product to have D2 copies 
of each edge which goes between clouds. This makes the degree of every vertex 
2D2, of which D2 stay within the same cloud, and the other D2 all connect to 
the same vertex in a neighbor cloud. This "balancing" make the random walk 

give the same weight to edges defined by G1 and G2. 

Definition 6.6. If G1 is a Di-regular graph on [N1] with rotation map 
RotG1 and G2 is a D2-regular graph on [D1] with rotation map RotG2, then 
their balanced replacement product G1 ( G2 is defined to be the 2D2-regular 
graph on [N1] x [D1] whose rotation map RotG1,®G2 is as follows: 

RotG,( G2 ((v, k), i): 

1. If i < D2, let (m, j) = RotG2(k, i) and output ((v, m), j). 

2. If i > D2, output (RotG1 (v, ), i). 

THEOREM 6.7. If G1 is an (N1, D1, Al)-graph and G2 is a (D1, D2, A2)- 
graph, then G1 ( G2 is a (N1 D1, 2D2, h(A, A2))-graph, where (using the 

function f from Theorems 3.2 or 4.3) 

h(A1, A2) < + (1,2)) 

In particular, h(A1, A2) < 1 when A1,A2 < 1. Moreover, RotG1®G2 can be 

computed in time poly(log N, log D1, log D2) with one oracle query to RotGl 
and one oracle query to RotG2. 

Proof. The proof is the same as that of Theorem 6.4, noting instead that 
M = (A + B)/2. 0 

As a final note, we observe the weakness of the replacement products 
relative to the zig-zag product. Informally, in zig-zag the expansion quality of 
the product improves with those of its component, while in the replacement it 
does not. More formally, while the function f(A1, 2) tends to zero when A1 
and A2 do, the functions g(Al, A2, D2) and h(A1, A2) do not. 
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