Alon-Boppana Lower Bound
and
Ramanujan Graphs

Luiz Kazuo Takei

March 1, 2010

(This lecture is based on [HLW06])

Recall that if G is an undirected graph with n vertices, then its adjacency matrix has n real eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$. Then, in order to construct a family of d-regular expanders, by the Alon-Milman theorem, we need to bound the spectral gap $(d - \lambda_2)$ from below. Hence it is important to understand the behavior of λ_2.

1 Main statement and definition

Theorem 1.1 (Alon-Boppana). There exists a constant c such that for every connected finite regular graph G,

$$\lambda_2(G) \geq 2\sqrt{d-1} \left(1 - \frac{c}{\Delta^2} \right)$$

where $\Delta = \text{diam}(G)$ and $d = \text{deg}(v)$ for every vertex v.

Corollary 1.2. Let $(G_m)_{m=1}^\infty$ be a family of connected, d-regular, finite graphs with $|V(G_m)| \to \infty$ as $m \to \infty$. Then,

$$\liminf_{m \to \infty} \lambda_2(G_m) \geq 2\sqrt{d-1}$$
In view of this corollary, we define Ramanujan graphs as graphs that are optimal in this sense:

Definition 1.3. An \((n,d)\)-graph \(G\) \((n\) vertices and \(d\)-regular) is called **Ramanujan** if

\[\lambda(G) \leq 2\sqrt{d-1} \]

where \(\lambda(G) = \max_{|\lambda| \neq d} |\lambda|\).

2 The infinite tree \(T_d\) and its spectrum

Throughout this section \(T = T_d, V = V(T)\) and \(N(v)\) denotes the set of neighbors of a vertex \(v \in V\). We can define

\[A_T : l_2(V) \to l_2(V) \]

just like in the finite case, that is,

\[(A_T f)(v) = \sum_{w \in N(v)} f(w). \]

We view \(A_T\) in \(B(l_2(V))\), the Banach algebra of bounded linear operators on \(l_2(V)\).

Definition 2.1. We say a function \(f : V \to \mathbb{C}\) is **spherical around vertex** \(v\) if \(f(u)\) depends only on the distance between \(u\) and \(v\) (\(\text{dist}(u,v)\)).

For any function \(f : V \to \mathbb{C}\), we can define its **spherical symmetrization around** \(v\) to be a function \(\tilde{f}\) that is spherical around \(v\) and such that

\[\sum_{\text{dist}(u,v) = i} \tilde{f}(u) = \sum_{\text{dist}(v,u) = i} f(u) \text{ for every } i \geq 0. \]

Definition 2.2. The **spectrum** of \(A_T\) is

\[\sigma(A_T) := \{ \lambda : \lambda I - A_T \text{ is not invertible} \} \]

(For basic properties of the spectrum, see [Rud91])

Theorem 2.3 (Cartier). \(\sigma(A_T) = [-2\sqrt{d-1}, 2\sqrt{d-1}]\)
Proof. (sketch)

We start by fixing a vertex \(v \in V \) and consider it to be the ‘root’ of our tree.

It can show that in our case,
\[\lambda \in \sigma(A_T) \iff \delta_v \notin \text{img}(\lambda I - A_T) \]
where \(\delta_v \) is the characteristic function of \(v \) \((\delta_v(v) = 1 \text{ and } \delta_v(u) = 0 \text{ for all the other } u \in V)\).

So, it is enough to show that
\[\delta_v = (\lambda I - A_T) \cdot f \tag{1} \]
has a solution (in \(l_2(V) \)) if \(|\lambda| < 2\sqrt{d-1} \) and does not have a solution if \(|\lambda| > 2\sqrt{d-1} \) (see theorems 12.26 and 10.13 in [Rud91]).

Claim 1. We may assume \(f \) in equation (1) is spherical around \(v \) (more precisely, if (1) has a solution for some \(f \), then it also has a solution for some \(\tilde{f} \) spherical around \(v \)).

In fact, if \(f \) satisfies (1), then it is easy to show its spherical symmetrization around \(v \) also satisfies (1).

If \(f \) is spherical around \(v \), then it is determined by a sequence \(f_0, f_1, f_2, \ldots \) such that \(f(u) = f_i \) for every \(u \) satisfying \(\text{dist}(u,v) = i \). Using this notation it is not hard to see that a spherical function \(f \) satisfies (1) if and only if:
\[\lambda f_0 = df_1 + 1 \]
\[\lambda f_i = f_{i-1} + (d-1)f_{i+1} \quad \text{for } i \geq 1 \tag{2} \]

Using linear algebra we can show the solutions \(\{f_i\} \) of (2) are of the form \(f_i = \alpha \rho_i^+ + \beta \rho_i^- \), where \(\rho_{\pm} = \frac{\lambda \pm \sqrt{\lambda^2 - 4(d-1)}}{2(d-1)} \).

Now, if \(|\lambda| < 2\sqrt{d-1} \) then \(|\rho_{\pm}| = \frac{1}{\sqrt{d-1}} \). Hence, \(|f_i| = \Theta((d-1)^{-\frac{i}{2}}) \) [according to the authors, this is an easy computation; the upper bound is easy to check but I could not verify the lower bound]. Since there are \(\Theta((d-1)^i) \) vertices at distance \(i \), this means such an \(f \) would not be in \(l_2 \) (in fact, \(||f||_2^2 \geq C \sum_{i=0}^{\infty} (d-1)^i)((d-1)^{-i/2})^2 = C \sum_{i=0}^{\infty} 1 = \infty \)). Hence, if \(|\lambda| < 2\sqrt{d-1} \), then \(\lambda \notin \sigma(A_T) \).
If $\lambda > 2\sqrt{d-1}$, then $r := |\rho_-| < \frac{1}{\sqrt{d-1}}$. In this case, we choose $\alpha = 0$, giving $f = \beta \rho_-$. Then, $||f||_2^2 \leq C \sum_{i=0}^{\infty} (d-1)\beta r^i = C|\beta|^2 \sum_{i=0}^{\infty} ((d-1)r^2)^i$. Since $r < \frac{1}{\sqrt{d-1}}$, we obtain $(d-1)r^2 < 1$ and, thus, $||f||_2^2 < \infty$. Hence, $f \in l_2$. It is clear that it satisfies (2) for all $i \geq 1$. We just have to check it satisfies $\lambda f_0 = df_1 + \lambda$, i.e., $\lambda \beta = d\beta - \lambda + 1$. One can check that this holds for some choice of β. So, if $\lambda > 2\sqrt{d-1}$, then $\lambda \in \sigma(A_T)$.

A similar argument shows that if $\lambda < -2\sqrt{d-1}$, then $\lambda \in \sigma(A_T)$.

3 A proof of the Alon-Boppana lower bound

We proceed now to the proof of theorem 1.1. In this section, G is a graph as in theorem 1.1 and $A = A_G$. It is not hard to see that $\lambda_2(G) = \max_{f \neq 1} \frac{f^T A f}{||f||}$ (where 1 denotes the constant function which maps everything to 1). So, we will define a convenient f that will give us the required lower bound for $\lambda_2(G)$.

Strategy of the proof: Consider $\Delta = \text{diam}(G)$ and $s,t \in V(G)$ such that $\text{dist}(s,t) = \Delta$. Roughly speaking, we will define f such that its values for vertices ‘near’ s are positive, its values for vertices ‘near’ t are negative and the remaining ones are mapped to zero. More specifically, we let $k = \lfloor \Delta^2 \rfloor - 1$ and consider $T_{d,k}$, the d-‘regular’ tree of height k (see figure 1). We construct an eigenvector g for $A_{T_{d,k}}$ (the adjacency matrix of $T_{d,k}$) whose eigenvalue satisfies $\mu \geq 2\sqrt{d-1}(1 - \frac{1}{d^2})$. By defining the values of f according to the values of g in a certain way (and normalizing its positive and negative values such that $<f,1> = \sum f(x) = 0$), we can show that $\frac{f^T A f}{||f||^2} \geq \mu$, giving us the lower bound we wanted.

We want to construct an eigenvector g for $A_{T_{d,k}}$ (with eigenvalue μ). If we assume g is spherical around v (the root of $T_{d,k}$), we get the following equations for g:

$$
\begin{align*}
\mu g_0 &= dg_1 \\
\mu g_i &= g_{i-1} + (d-1)g_{i+1}, \text{ for } i = 1, \ldots, k \\
g_{k+1} &= 0
\end{align*}
$$

(to simplify notation we assume there is a $(k+1)$-th level and the value
Claim 3.1. There is a $\mu > 1 - \frac{c}{\Delta^2}$ (with $c \approx 2\pi^2$) such that there is a real solution g of (3) that is non-negative and non-increasing.

Proof. Define $h : \{0, \ldots, k+1\} \to \mathbb{R}$ by $h(i) := (d-1)^{-\frac{i}{2}} \sin((k+1-i)\theta)$. It is easy to see that $h_{k+1} = 0$. Let us check that h satisfies (3) regardless of the value of θ:

$$h_{i-1} + (d-1)h_{i+1} = (d-1)^{-\frac{i+1}{2}} \cdot [\sin((k+2-i)\theta) + \sin((k-i)\theta)]$$

$$= \sqrt{d-1}(d-1)^{-\frac{i}{2}} \cdot 2 \sin((k+1)\theta) \cos(\theta) = \mu h_i$$

The condition for $i = 0$ reads

$$(2d - 2) \cos(\theta) \sin((k+1)\theta) = d \sin(k\theta)$$

The smallest positive root of this equation is in $(0, \frac{\pi}{k+1})$ because the difference of the two terms of this equation change sign between 0 and $\frac{\pi}{k+1}$. So, $\theta \in (0, \frac{\pi}{k+1})$. Hence, $\theta_0 < \frac{\pi}{k+1} \approx \frac{2\pi}{k}$, since $k = \lfloor \frac{\Delta}{2} \rfloor - 1$. By the Taylor expansion of cos, $\cos(\theta_0) > 1 - \frac{c}{\Delta^2}$ (so $c \approx 2\pi^2$).

Moreover, since $\theta \in (0, \frac{\pi}{k+1})$, h is non-negative and non-decreasing.\qed

Let s and t be two vertices that realize the distance Δ. We define the sets of points ‘near’ s, ‘near’ t and the rest of them:

$$S_i := \{v : \text{dist}(s, v) = i\} \quad \text{for } i = 0, \ldots, k$$

$$T_i := \{v : \text{dist}(t, v) = i\} \quad \text{for } j = 0, \ldots, k$$

$$Q := V(G) \setminus \bigcup_{0 \leq i \leq k} (S_i \cup T_i)$$

Notice that the sets S_i and T_j are disjoint (for any i, j). We are now ready to define $f : V(G) \to \mathbb{R}:

$$f(v) = \begin{cases}
 c_1g_i & \text{if } v \in S_i, \\
 -c_2g_i & \text{if } v \in T_i \\
 0 & \text{otherwise}
\end{cases}$$

where c_1 and c_2 are positive constants that will be determined later.

Claim 3.2. With this definition we have $$(Af)_v \geq \mu f_v \quad \text{for } v \in \cup_i S_i$$

and $$(Af)_v \leq \mu f_v \quad \text{for } v \in \cup_i T_i$$
Proof. Let $v \in T_i$ for some $i > 0$. Then, of its neighbors, $p \geq 1$ belong to T_{i-1}, q belong to T_i and $(d - p - q)$ belong to T_{i+1}. Thus,

$$(Af)_v = -(p \cdot c_2 g_{i-1} + q \cdot c_2 g_i + (d - p - q) \cdot c_2 g_{i+1})$$

Now, by (3) and claim 3.1,

$$(Af)_v = -c_2 \cdot (pg_{i-1} + qg_i + (d - p - q)g_{i+1})$$

$$\leq -c_2 \cdot (g_{i-1} + (p - 1)g_{i-1} + qg_i + (d - p - q)g_{i+1})$$

$$= -c_2 \cdot (g_{i-1} + (d - 1)g_{i+1})$$

$$= -c_2 \cdot (A_{d,k} g)_i = -c_2 \mu g_i = \mu f_v.$$

A similar argument works for $v \in S_i$. \hfill \Box

As a consequence of claims 3.1 and 3.2, we obtain the following

Theorem 3.3 (Alon-Boppana).

$$\lambda_2(G) \geq 2\sqrt{d - 1} \left(1 - \frac{c}{\Delta^2}\right)$$

Proof. By claim 3.2,

$$f^T A f = \sum_{v \in V(G)} f_v(Af)_v$$

$$= \sum_{v \in U S_i} f_v(Af)_v + \sum_{v \in U T_i} f_v(Af)_v + \sum_{v \in Q} f_v(Af)_v$$

$$\geq \sum_{v \in U S_i} f_v \mu f_v + \sum_{v \in U T_i} f_v \mu f_v = \mu f^T f = \mu \|f\|^2$$

Finally, by choosing suitable c_1 and c_2, we get

$$\sum_{v \in U S_i} f_v = - \sum_{v \in U T_i} f_v$$

and, thus, $f \perp 1$.

Therefore, by claim 3.1,

$$\lambda_2(A) \geq \frac{f^T A f}{\|f\|^2} \geq \mu \geq 2\sqrt{d - 1} \left(1 - \frac{c}{\Delta^2}\right)$$

\hfill \Box

6
4 Further Remarks

Conjecture 4.1. For every integer \(d \geq 3\) there exists arbitrarily large \(d\)-regular Ramanujan graphs.

Theorem 4.2 (Lubotzky-Phillips-Sarnak [LPS88], Margulis [Mar88], Morgenstern [Mor94]). For every prime \(p\) and every positive integer \(k\) there exist infinitely many \(d\)-regular Ramanujan graphs with \(d = p^k + 1\).

References

