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ABSTRACT 

We define and construct Ramanujan complexes. These are simplicial 

complexes which are higher dimensional analogues of Ramanujan graphs 

(constructed in [LPS]). They are obtained as quotients of the buildings of 

type Ad-1 associated with PGLd(F) where F is a local field of positive 

characteristic. 

1. I n t r o d u c t i o n  

A finite k-regular graph X is called a Ramanujan graph if for every eigenvalue 

A of the adjacency matr ix A = Ax of X either A = ~=k or I)~1 < 2v/k - 1. This 

term was defined in [LPS] where some explicit constructions of such graphs were 

presented; see also [Mal], [Lul], [Mo]. These graphs were obtained as quotients 

of the k-regular tree T = Tk, for k = q + l ,  q a prime power, divided by the action 

* The authors were partially supported by grants from NSF and BSF (U.S.-Israel). 
** Current address: Department of Mathematics, Bar-Ilan University, Ramat Gan 

52900, Israel. 
Received September 1, 2003 and in revised form February 23, 2004 

267 



268 A. LUBOTZKY, B. SAMUELS AND U. VISHNE Isr. J. Math. 

of congruence subgroups of G = PGL2 (F). Here F is a non-archimedean local 

field with residue field of order q, and the tree T is the Bruhat-Tits building 

associated with G, which is a building of type ,41. The (proved) Ramanujan 

conjecture for GL2 was an essential ingredient in the proof that the graphs 

are indeed Ramanujan; see [Lul]. The number 2 v ~ -  1 plays a special role in 

the definition of Ramanujan graphs because of the Alon-Boppana theorem (see 

[LPS]), which proves that this is the best possible bound for an infinite family of 

k-regular graphs. A conceptual explanation was given by Greenberg [Gr], [Lul, 

Thin. 4.2.7] (see also [GZ]): for a connected graph X, let p(X) denote the norm 

of the adjacency operator A on L2(X) (so p(Tk) = 2x /~ -  1); then, Greenberg 

showed that no upper bound on the non-trivial eigenvalues of finite quotients 

of X is better than p(X). These considerations motivated Cartwright, Sol~ and 

Zuk [CSZ] to suggest a generalization of the notion of Ramanujan graphs from 

finite quotients of Tk - -  which is an 41 building - -  to the simplicial complexes 

obtained as finite quotients of/~ = ]3d(F), the Bruhat-Tits building of type 

-4d-1 associated with the group G = PGL/(F) .  The vertices B ° of the building 

are labelled by a 'color' function •: B ° ~ Z / d Z ,  and we may look at the d - 1 

colored adjacency operators Ak, k = 1 , . . . ,  d -  1 on L2(B°), called the Hecke 

operators. They are defined by 

(1.1) (Akf)(x) = ~ f(y) 

where the summation is over the neighbors y of x such that Q(y) - Q(x) = k in 

Z/dZ. These operators Ak are bounded, normal, and commute with each other. 

Thus, they have a simultaneous spectral decomposition, and the spectrum Gd 

of (A1,.. .  ,Ad-1) on L2(B °) was computed explicitly as a subset of C d-t (see 

Subsection 2.3 below). This set is, of course, contained in the Cartesian product 

~d,1 X "'* X ~ d , d - 1 ,  where ~d ,k  is the spectrum of Ak, but it is not equal to the 

product. 

Detinition 1.1 (following [CSZ]): A finite quotient X of B is called a Ramanujan 

complex if the eigenvalues of every non-trivial simultanenous eigenvector v E 

L2(X), Akv = Akv, satisfy (A1,-.. ,Ad-1) E ®d. 

(See Subsection 2.3 for more detailed explanations, and in particular for a 

description of the trivial eigenvalues. See also [JL] for a definition and con- 

struction of Ramanujan complexes which are not simplicial.) Cartwright et al. 

[CSZ] also suggested a way of obtaining such Ramanujan complexes: assume F 

is a local field of positive characteristic; let F be a cocompact arithmetic lattice 

of G = PGLd(F) of inner type, and F(I) a congruence subgroup of F. They 
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conjectured that the quotients F( I ) \B are Ramanujan complexes. The work 

of Lafforgue in the last few years, which proved the Ramanujan conjecture for 

GLd in characteristic p (an extension of Drienfeld's work for GL2 in character- 

istic p and of Deligne's for GL2 in characteristic zero), provided hope that these 

combinatorial applications could be deduced. The current work, which started 

from the challenge to prove the conjecture in [CSZ], shows that for general d, 

the story is more subtle. It turns out that most of these quotients are indeed 

Ramanujan, but not all. To describe our results, let us first introduce some 

notation. Let k be a global field of characteristic p > 0, and D a division alge- 

bra of degree d over k. Denote by G' the k-algebraic group D X / k  ×, and fix a 

suitable embedding of G' as a linear group (see Section 5). Let T be the finite 

set of valuations of k for which D does not split. We assume that for every 

v E T, D~ = D®kk~ is a division algebra. Let ~0 be a valuation of k which is 

not in T, and F = k. o. Let 

(1.2) R o = { x E k : v ( x ) _ > 0  for eve ryvCv0} .  

Then F = G' (Ro) is a discrete subgroup of G' (F), and the latter is isomorphic to 

G(F) = PGLg(F), as F splits D. By general results, F is in fact a cocompact 

lattice in G(F) - -  an "arithmetic lattice of inner type". Let 13 = ]3d(F) be 

the Bruhat Tits building of G(F); then 13°~-G(F)/K, where K = G(O) is a 

maximal compact subgroup (O is the ring of integers in F). G(F) acts on B 

by left translation. For 0 ~ I<lRo an ideal (note that R0 is a principal ideal 

domain), we have the principal congruence subgroup 

(1.3) r ( / )  = G'(R0, I) = Ker(G'(Ro)--+G'(Ro/I)). 

In the following two theorems we assume the global Jacquet-Langlands corres- 

pondence for function fields; see Remark 1.6 below regarding this assumption. 

THEOREM 1.2: I fd  is prime, then for every 0 # I<~R0, F( I ) \B  is a Ramanujan 

complex. 

So for d prime, the Cartwright-Sol6-Zuk conjecture is indeed true. On the 

other hand, for general d: 

THEOREM 1.3: (a) For every d, i f  I is prime to some valuation O E T, i.e. 

O(a) = 0 for some O E T and some a E I, then F(I)\/3 is a Ramanujan complex. 

(b) If  d is not a prime, then there exist (infinitely many) ideals I such that 

F(I ) \B  are not Ramanujan. 

Theorem 1.2 may suggest that in positive characteristic, if d is a prime, then 

every finite quotient of B is Ramanujan. We do not know if this is indeed the 
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case (which would be truly remarkable), but at least in the zero characteristic 

analog there are counterexamples. Indeed, in Section 6 we show that  if E is a 

non-archimedean local field of characteristic zero, then congruence quotients of 

B = Bd(E) can be non-Ramanujan for every d _> 4. This happens if F is taken 

to be an arithmetic group of outer type. 

THEOREM 1.4: Let E be a non-archimedean local field of characteristic zero, 

and assume d >_ 4. Then Bd(E) has infinitely many non-Ramanujan quotients. 

For a discussion of the case d = 3, see [B1]. The proof of Theorems 1.2 and 

1.3(a) follows in principle the line of proof for Ramanujan graphs, as in [Lull. 

The problem is transferred to representation theory. 

PROPOSITION 1.5: Let F be a cocompact lattice in G(F) = PGLd(F) .  Then 

F\B is a Ramanujan complex iff every irreducible spherical infinite-dimensional 

sub-represen tation of L 2 (F \G(F) )  is tempered. 

The strategy now is to start  with an irreducible sub-representation p of 

L2(F(I)\G'(F)). By Strong Approximation, one can show (see Subsection 3.2 

below) that  p is a local factor of an ad~lic automorphic representation 7r' = ®~, 

in L2(G'(k)\G'(A)) such that  7r' = p, where A is the ring of addes  of k. We 
~0 

can view 7r' as an automorphic representation of DX(N). Then, the Jacquet-  

Langlands correspondence associates with 7r' an automorphic representation 

' . We then appeal to the 7r = ® ~  in L2(GLd(k)\GLd(N)), such that  7r. o = 7r,0 

work of Lafforgue, who proved that  if 7r is cuspidal, then 7r, is tempered for 

every unramified u, and in particular 7r~ o = p is tempered. Now, the cuspidality 

issue is exactly what distinguishes between the cases where d is a prime and 

where d is a composite number. If d is prime, then all infinite-dimensional irre- 

ducible sub-representations of L 2 (GLd(k)\GLd (A)) are cuspidal (and the others 

are one-dimensional, and are responsible for the "trivial" eigenvalues, see Sub- 

section 2.3). Thus Theorem 1.2 can be proved. On the other hand, when d 

is not a prime, there is a "residual spectrum" and rr may be there, in which 

case 7r~ o is not tempered. Theorem 1.3 (both parts (a) and (b)) is proved by 

a careful analysis of the image of the Jacquet Langlands map, as described in 

[HT]. The proof of Theorem 1.4 is different. We apply the method of Burger-  

Li-Sarnak [BLS1], [BLS2] who showed how the existence of large "extended 

arithmetic subgroups" in F(I)  can affect the spectrum. For arithmetic lattices 

associated to Hermitian forms (unlike the case of inner type), such "large" sub- 

groups do exist, but anisotropic Hermitian forms (with enough variables) exist 

only if char(F) = 0. 
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Remark 1.6: The global Jacquet-Langlands correspondence is proved in the 

literature for fields of characteristic zero (see Theorem 4.4 below and [HT, 

Thm. VI.I.1]). It is likely that the theorem is valid in exactly the same for- 

mulation in positive characteristic, and it seems (to some experts we consulted) 

that a proof can be worked out using existing knowledge. So far, this task has 

not been carried out. We hope that our work will give some additional moti- 

vation to complete this gap in the literature. W. Li [Li] managed to prove the 

existence of Ramanujan complexes of type Ad in positive characteristic, avoid- 

ing the use of the Jacquet-Langlands correspondence, and in fact also not using 

Lafforgue's theorem, appealing to [LRS] instead. In order to apply this method, 

one needs the division algebra to be ramified in at least four places, and there- 

fore it does not cover the case of algebras ramified in two places. This case 

is crucial for our next work, [LSV], in which we give an explicit construction 

of Ramanujan complexes. On the other hand, we have to assume that in the 

ramification points the algebra is completely ramified, while Li requires this as- 

sumption in only two prime places. We recently learned that Alireza Sarveniazi 

[Sa] has also given a construction of Ramanujan complexes. 

The paper is organized as follows: in Section 2 we describe briefly the building 

/3, the operators Ak, the local representation theory, and, in particular, we prove 

Proposition 1.5 above. In Section 3 we show how strong approximation enables 

one to pass from the local theory to the global one. In Section 4 we survey the 

global theory: Lafforgue's theorem, the residual spectrum, and the Jacquet- 

Langlands correspondence. After the preparations we prove Theorems 1.2 and 

1.3 in Section 5 and Theorem 1.4 in Section 6. Much of the material of Sections 

2-4 is well known to experts, but since we expect (and hope) the paper will 

have readers outside representation theory and automorphic forms, we tried to 

present the material in a suitable way for non-experts. 
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working on the project. This work was done while the first-named author visited 
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and support are gratefully acknowledged. We also thank the NSF and the BSF 

US-Israel for their support. 
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2. AlPine bui ld ings  a n d  r e p r e s e n t a t i o n s  of  t h e  local g r o u p  

In this section, F is a non-Archimedean local field of arbitrary characteristic, 

(9 its ring of integers, and w E (9 a uniformizer. Recall that  a complex is a 

structure composed of/-cells, where the Let v0: F-+Z denote the valuation of 

F.  

2.1. AFFINE BUILDINGS OF TYPE Ad-1. Recall that  a complex is a structure 

composed of/-cells, where the 0-cells are called vertices, and every/-cell is a set 

of i + 1 vertices. A complex is simplicial if every subset of a cell is also a cell. 

We will now describe the affine building B = 13d(F) associated to PGLd(F) ,  

which is an (infinite) simplicial complex. Consider the (9-lattices of full rank in 

F d. We define an equivalence relation on lattices by setting L ~,, sL for every 

s E F × • Since F ×/(9 × is the infinite cyclic group generated by m, an equivalent 

definition is that  L ,,~ raiL for every i E Z. By B ~ we denote the set of/-cells 

of B. The vertices g ° are the equivalence classes of lattices. There is an edge 

(1-cell)(x,x'), from x : [L] to x' : [L'] E B °, if m L C  L' C i .  Notice that  

this is a symmetric relation, since then wL' C_ vzL C_ L'. The quotient L / w L  
is a vector space of dimension d over the field (9/w(9~Fq. As/-cells of B we 

take the complete subgraphs of size i + 1 of B °. It immediately follows that  B 

has ( d -  1)-cells (corresponding to maximal flags in quotients L/wL) .  It also 

follows that  there are no higher dimensional cells. We call L0 : (9 d C_ F d the 

s t a n d a r d  la t t ice .  For every lattice L, there is some i such that  ~viL C_ Lo (it 

then follows that  every two lattices of maximal rank are commensurable). We 

define a color function Q: B°-+Z/d, by 

(2.1) @(L) = 1Ogq [L0: ~iL]  

for i large enough; the color is well defined since logq [wiL : •i+IL] -- d. In a 

similar way, the color of an ordered edge (x, y) E B 1 is defined to be 0(x) - Q(y) 

(modd) .  The group GLd(F) acts on lattices by its action on bases; the scalar 

matrices carry a lattice to an equivalent lattice, so G = PGLd(F) acts (tran- 

sitively) on the vertices of B. Since the action of GLd(F) preserves inclusion 

of lattices, G respects the structure of B, and in particular the color of edges. 

Note that  GLd(F) does not preserve the color of vertices, but SLd(F) does. The 

stabilizer of [L0] is the maximal compact subgroup K = PGLd((9). We can thus 

identify B ° with G/K,  where G acts by multiplication from the left. A coset 

gK E G / K  corresponds to the lattice generated by the columns of g (so [L0] 

corresponds to the identity matrix). The color of gK can then be computed 
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from the determinant of g: 

det(g) = w ~(gK) (mod F×d), 

where F × d is the subgroup of d-powers in F ×. Let wk = diag(w, . . . ,  w ,1 , . . . ,  1), 

where det(wk) = w k. The lattice corresponding to Wki( is obviously a neighbor 

of color k of [L0]. Let ~k be the set of neighbors of color k of [L0]. Then I( 

acts (as a subgroup of G) transitively on ~k, so that I(wkK = UyK, where 

the union is over yK E ~tk. Multiplying from the left by an arbitrary g E G, 

we see that the neighbors forming an edge of color k with gi( are {gyK}yKeak. 
It follows that the operators Ak (defined in Equation (1.1)) act on functions 

]: G/K---+C by 

(Akf)(gi()= E f(gyK)-- E fy f(gx)dx---fK f(gx)dx; 
yKEflk yKEfl~ K wkK 

the integrals are normalized so that fK dx = 1. See [M] and [B2] for details. 

2.2. SPHERICAL REPRESENTATIONS. In this section let I( = GLd(O), which 

is a maximal compact subgroup of G = GLd(F). As in [Lull, we study the 

spectrum of the operators Ak via representations of GLd(F). An irreducible 

admissible representation of G is called H-spher ica l  if the representation space 

has an H-fixed vector, where H < G is a subgroup. The I(-spherical representa- 

tions are simply called spherical.  (A representation is s m o o t h  if every v E V 

is fixed under some open compact subgroup, and admissible  if, moreover, the 

spaces fixed by each open compact subgroup are finite dimensional.) 
The Hecke operators Ak of the preceding subsection (defined in the same way, 

as functions of G/I( for G = GLd(F) rather than G = PGLd(F)) generate the 

Hecke algebra H(G, I() of all bi-K-invariant compactly supported functions on 

G, with multiplication defined by 

(d , A')(g) = fc A(x)A'(x-lg)dx" 

The Ak commute with each other, and freely generate H(G, I() (cf. [M, Sec. V]). 

Let p: G-~ End(V) be an admissible representation; the Hecke algebra acts on 

the representation space (see [C, Eq. (9)]) by 

(2.2) A .v = fo A(x)(p(x))(v)dx, 

which is an integration over a compact set since A is compactly supported. It 

projects V to the I(-fixed subspace V K (which is finite dimensional as the re- 

presentation is admissible). Moreover, if V is an irreducible G-module, then V K 
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is an irreducible H(G, K)-module.  Since H(G, K)  is commutative and finitely 

generated, V A" is one-dimensional in this case, and consequently, every v E V K 

is an eigenvector of all the Ak. We describe how spherical representations are 

parameterized by d-tuples of complex numbers, called the Satake parameters. 

For details, the reader is referred to [C]. Let B denote a Borel subgroup of G (e.g. 

the upper triangular matrices), U its unipotent radical, and T~-B/U~-(F ×)d a 

maximal torus of B. We then have B = UT and G = B K  = UTh'.  

Recall that  F × /O x = (w). A character ~: F x ~ C  × is spherical if it is trivial 

on the maximal compact subgroup of F × , namely O x . Such a character is, thus, 

determined by z = ):(:v), which is an arbitrary complex number. The character 

is called u n i t a r y  iff z C S 1 = {w E C: I--Iwl}. Every character X: T--+Cx can 

be written as ) / (d iag( t l , . . . ,  td)) = X1 (tl)" " )id(td), for characters )/i: F × ~ C  × . 

is said to be u n r a m i f i e d  if the Xi are spherical. Since T ~ B / U ,  X extends to 

a character of B. The symmetric group Sd acts on the characters by permuting 

the )/i. The unitary induction of representations from B to G is defined using 

the m o d u l a r  f u n c t i o n  

(2.3) A(b) = lalld-lla2I d -3 . . . l ad l  l -d,  b E B 

where a l , a 2 , . . .  ,ad are the entries on the diagonal of b (in that  order), and 

[" IF is the absolute value function of F,  normalized so that  I=Ixq -"('(z) where 

q = IO/wOI. The induced representation I~ = I n d ' ( x )  is the space of locally 

constant functions f :  G--+C such that  

f(bg) = A1/2(b)x(b)f(g), b e B ,g  e G 

with the action of G from the right (by g.  f (x )  = f(xg)).  The inclusion of 

the modular function A guarantees that  if X is unitary, then there is an inner 

product (f , f~) = fK f ( x ) f f ( x ) d x  on Ix, for which the action of G is unitary 

(these are called the spherical principal series representations). However, the 

space I X still can be unitary even if X is not unitary (these are called spherical 

complementary series representations); see Subsection 2.4. We remark that  I X 

need not be irreducible. Two spaces I x and I X, are isomorphic iff X r = w X for 

some w E Sd ([C, Subsec. 3.3], [Bu, Sec. 2.6]). Notice that  I' ] is spherical, so the 

modular function A is an unramified character. If g E B M K then g is upper 

triangular, with its diagonal entries invertible in O. Since G = B K  and X is 

unramified, it follows that  

(2.4) fx(bk) := A1/'2(bk)x(bk) = A1/2(b)x(b), b E B , k  e Ix', 
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is a well defined K-fixed function (unique in Ix) , which makes the induced re- 

presentation p: G-+ End(I~) spherical. By definition, p is determined by the 

numbers zi = Xi(w) = ~(d iag(1 , . . . ,  1, w, 1 , . . . ,  1)), called the Satake parame- 

ters of ;~, where ?(i are the diagonal components of )(, which is a sub-represen- 

tation of A-1/2pIB. The representations which are well defined on PGLd(F) 
are those with Z l ' " Z d  = 1 (since they need to be trivial on the center of 

GLd(F)) .  Let ak(z l , . . . ,Zd)  be the kth elementary symmetric function, i.e. 

PROPOSITION 2.1: The function f~ is an eigenfunction of the Ak, Akf~ = )~kfx, 
where Ak = qk(d-k)/2ak(Zl, . . . ,  Zd). 

Proof: Since H(G, K)  acts on I x and preserves the K-fixed subspace (fx), fx 

is an eigenvector of the Ak. It is enough to compute Akfx at the point g --- i 

(noting that fx(1) = i). For every subset C C_ {I,... ,d} of size k, let [~k,c be 

the set of upper triangular matrices m such that mii = w if i E C, mii -~ 1 
if i ~ C, mij is in some fixed lifting of O/w(9  to O if i E C and j ~ C, and 

mi~ = 0 otherwise. For example, for d = 4 and k = 2 the sets are 

i 0 * * 
~y * * 

0 1 0 
0 0 1 

( oo oO o° 

0 1 0 1 0 0 
' 0 0 w ' 0 1 0 ' 

0 0 0 0 0 w (oo!) (ioo o) 
0 w * 1 0 0 

' 0 0 1 ' 0 w 0 " 

0 0 0 0 0 w 

There is a one-to-one correspondence between neighbors y K  E ftk of [L0] and 

subspaces of co-dimension k of Lo/wLo,  so using the correspondence between 

matrices and lattices mentioned above, f~k = [-iV 12k,C. Fix a subset C, and 

let s = ~ iEc i "  The number of matrices in ftk,C is q(d-k+l)+...+d-s, while 
YI (d+l)/2-i = q-k(d+l)/2+s for every y K  E ftk,c. It follows A1/2(y) = - ~ e c  w F 

that  the sum of A 1/2 (Y)X(Y) over y K  E ftk,C is qk(d-k)/2X(y ) = qk(d-k)/2IIiccZi, 

SO by summing over all C we obtain 

(Akfx)(1) = E A1/2(Y)X(Y) = qk(d-k)/2ak(Zl'''''Zd)" 
yKCf2k 

Now let p: G--+ End(V) be an irreducible spherical representation of G = 

GLd(F)  with a unique (up to scalar multiples) K-invariant vector vo E V. Let 
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12 be the representation contragredient to V. The space 1) K is dual to V K and 

thus one-dimensional. Choose do E 1 ) g  such that  (vo, do) = 1 (where (,) is the 

action of V on V). Define the bi-K-invariant function ¢(g) = (p(g)vo, vo) (so 

that  ¢(1) = 1). ~p(g) is called a spher ica l  func t ion .  As explained earlier, v0 

is an eigenvector of H(G, K).  The action of H(G, K) on V K = <vo} defines a 

homomorphism w: H(G, K)-+C by 

(2.5) A .Vo = w(A)vo. 

The action of G (from the right) on the space of functions {f: G-+C} induces 

an action of the Hecke algebra on this space, and by Equation (2.2) and the 

definition of ¢, we find that  A- ¢ = w(A)¢. Using Equation (2.2) one can check 

that  

(2.6) ¢(g) = W(1KgK)/It(KgK), 

where 1KgK is the characteristic function of K g K  C_ G, and It is the normalized 

measure. 

PROPOSITION 2.2: Using the notation as above, if Pl and P2 are irreducible 

spherical representations, then Pl - P2 iff~bl = ¢2 iff wl = w2. 

Proof: Let vlo and V2o be the (unique) K-fixed vectors of Pl and P2. The 

equivalence of ~Pl = ¢2 and wl = w2 follows at once from Equation (2.6). If 

pl ~ P2 then it is obvious that  ¢1 = (Pl(')Vlo,Vlo) = (P2(')v%,V2o) = ¢2. In 
the other direction, assume ~Pl = ~P2, and let Vi be the representation space 

of Pi- Define a map from V~ to (¢iG), the representation spanned by ¢i, by 

sending v E Vi to the function g ~ (p(g)v,v~o>, for i -- 1,2. This is easily seen 

to be a non-zero homomorphism (since v~ o ~ ¢i ~ 0), which is an isomorphism 

since V~ is irreducible. Then pl~<¢lG) = (~P2G)~-p2. | 

As a G-module, I x has finite composition length, so it has only finitely many 

irreducible subquotients. 

PROPOSITION 2.3 ([C]): Every irreducible spherical representation of GLd(F) 

is isomorphic to a subquotient of I x for some unramified character X, which is 

unique up to permutation. 

Proof: Let p: G--+ End(V) be an irreducible spherical representation of G with 

vo as its K-invariant vector. Let w: H(G, K)-+C be its corresponding homo- 

morphism, defined by Equation (2.5). It can be shown [C, Cor. 4.2] that  every 
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such homomorphism is of the form 

w~(A) = / G  A(x)fx(x)dx 

for some unramified character X: T--+C (unique up to permutation) where f~ is 

defined in Equation (2.4). Then 

(A. h)(1)  = / G  A(x)f~(x)dx = wx(A) = wx(A ) • fx(1), 

and since fx is an eigenvector, A. fx = wx(A)fx for every A E H(G, K). Let W 

be an irreducible subquotient of I x in which fx has a non-zero image. By the 

previous proposition p is isomorphic to W, since wx = w. 1 

Thus, every spherical representation is determined by the Satake parameters 

zi = Xi(w) = x(diag(1,. . . ,  1,w, 1 , . . . ,  1)), for some unramified X, uniquely 

determined up to permutation. 

PROPOSITION 2.4: Let f : G / K - + C  be a simultaneous eigenvector of 
A1,. . . ,Ad-1.  Then there is an unramified character )~ such that fx has the 
same eigenvalues. 

Proof'. Consider f: G-+C, which is invariant with respect to K. Let (fG) de- 

note the linear span of the G-orbits of f ,  where G acts from the right. Taking 

this space modulo a maximal sub-module not containing f ,  we obtain an irre- 

ducible spherical representation, where f is a (unique) K-fixed vector. By the 

previous proposition, it is isomorphic to a subquotient of I x for an unramified 

character X, where fx is the unique K-fixed vector. By Proposition 2.2, since the 

two representation spaces are isomorphic, they induce the same homomorphism 

w: H(G, K)--+C, namely Ak • f = w(Ak)f  and Ak.  fx = w(Ak)fx. 1 

Let p: G--+ End(V) be a unitary representation, and (,) the inner product 

defined on V. The functions of the form 

pv, : g (p(g)v,w) 

where v, w e V are called the ma t r ix  coefficients of p. Notice that if V has 

a K-fixed vector Vo and (v0,vo) = 1, then Pvo,,o is a spherical function. In 

the special case of Ix, Pfx,fx (g) = fK fx( xg)dx" If V is irreducible, then fixing 

w ~ 0, the map v ~ Pv,w is an isomorphism of representations (where G acts 

on the space of functions from the right). A representation is called t empered ,  

if for some 0 ~ v,w E V, P,,w E L2+~(G) for every e > 0. The following 

equivalence is well known: 
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PROPOSITION 2.5: An irreducible spherical unitary representation is tempered 
if[ its Satake parameters have absolute value 1. 

2.3. RAMANUJAN COMPLEXES AND THE SPECTRUM OF A k. Let F be a co- 

compact lattice of G = PGLd(F).  Then P acts on B = G / K  by left translation, 

and F\B is a finite complex. The color function defined on B ° (Equation (2.1)) 

may not be preserved by the map B~F\ /~ .  However, the colors defined on B 1 by 

Q(x, y) = ~(x) - e(Y) (rood d) are preserved, since they are determined by the 

index of (a representative of) y as a sublattice in (a representative of) x. Since 

the Hecke algebra H(G, K) acts on G from the right, and F is acting from the 

left, the operators Ak on L2(B) = L 2 (G/K) induce colored adjacency operators 

on F\/~. 

It should be noted that  if F is torsion free, then ?x  ~ x for any • ~ 1 and any 

x E B °, so the underlying graph of F \B  is simple. Every cocompact lattice has 

a finite index torsion free subgroup. The trivial eigenvectors appear in L 2 (F\/~) 

but not in L e (B), since the former complex is finite. The trivial eigenvectors can 

be constructed as follows. The trivial representation of G is obviously spherical. 

Taking X = A-1/2, we see that  fx(9) = 1 for every g (see Equation (2.4)), and 

the action of G on the subspace Cfx C_ I X is trivial. The Satake parameters 

of the trivial representation are thus zi = A-1/2(diag(1 . . . .  ,1 ,w,  1 , . . . ,  1)) = 

q-(d-2i+l)/2. More generally, since G(F)/PSLd(F)K~-F×/F ×d, G has d one- 

dimensional spherical representations. Fixing 4 such that ~d = 1, 

(2.7) x ( g )  ---- A - 1 / 2 ( g ) ~  u°(det(g)) 

corresponds to a one-dimensional representation, with the K-fixed vector fx (g) 
= ~uo(det(g)) (since det(k) E O × for every k E K).  The Satake parameters in 

this case are ~q-(d-1)/2,..., ~q(d-1)/2, and the eigenvalues are 

~k . qk(d-k)/2 0.k(q-(d-1)/2 ' q - ( d - 3 ) / 2 , . . .  , q(d-1)/2). 

Let t = IF : F n PSLd(F)]. By Equation (2.7), the trivial eigenvector ]x is well 

defined on F \B  iff ~d/t = 1, and the respective d/t eigenvectors give rise to the 

trivial eigenvalues. Since G is infinite, these fx do not belong to L2(B). Let 

~d,k C_ C denote the spectrum of the operator Ak acting on L2(g). 

Definition 2.6: The complex F\/3 is pseudo-Ramanujan if for each k = 

1 , . . . ,  d -  1, the non-trivial eigenvalues of Ak acting on L 2 (F\B) belong to ®d,k. 
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Let Gd C_ C d-1 denote the simultaneous spectrum of (A1, . . . ,  Ad-1)  acting 

on the space L2(/3), namely, the set of (A1 . . . .  , Ad-1) E C d-x for which there 

exist a sequence of unit vectors Vn E L2(B) such that  l i m n - ~ ( A k v n  - ;~kVn) = 0 

for every k = 1 , . . . , d -  1. 

Definition 2. 7: The complex F\/~ is Ramanujan if for every non-trivial simulta- 

neous eigenvector f E L2(F\B) of the Ak,  the eigenvalues (A1,. . . ,  Ad-1) belong 

to ~d .  

Since the Ak commute, every eigenvalue of Ak can be obtained by a simulta- 

neous eigenvector. Hence, a Ramanujan complex is pseudo-Ramanujan. On the 

other hand, ~ d  is not the Cartesian product of the Gd,k. For example, inverting 

the direction of edges in B carries Ak to Ad-k ,  SO the operators A k and Ad-k  

are adjoint to each other. In particular, for every (A1,... ,Ad) E ~d we have 

that  Ad-k = Ak. 

Remark 2.8: The spectrum Sd,k of Ak on L2(/~) is equal to the projection of 

~d  on the kth component• 

Remark 2.9: If d = 2 or d = 3, then F \B  is Ramanujan iff it is pseudo- 

Ramanujan (indeed, for d = 2 the definitions coincide, and for d = 3, A2 is the 

adjoint operator of A1). 

Let S = {(Zl, . . . ,Zd):  [=lz, l ,  zl " ' 'Zd = 1} and a: S--~C d-1 be the map de- 

fined by ( z l , . . . ,  Zd) ~ (A1,... ,Ad-1), where 

Ak = qk(d-k)/2 ak(Zl,  . . . , Zd). 

The theorem below is proved in [Cw]. For completeness, we sketch the proof, 

following ideas from [CM] (where the result was proved for d = 3). First, we 

will need an easy calculus lemma: 

LEMMA 2.10: Let  (an), (bn) be posi t ive series. I f l i m  sup(anb~ +E) < 1 for every 

e > 0 and {an} is bounded, then limsup(anb2n) < 1. 

P r o o f  Otherwise let C > 1 be an upper bound of {an} and p = l imsup(anb~) 

> 1, and take e < 21og(p) / log(C) .  Then 

• ~/(2+~) 2/(2+~) 2 _ CC/(2+~) . . . .  / ,  h2+~2/(2+~) p = hm sup(a n a n bn) < lira o ~ l ~ n v n  / < C el2, 

a contradiction. | 
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THEOREM 2.11: The simultaneous spectrum ~d is equal to a(S). 

Proof: Let z = ( Z l , . . . ,  Zd) E S. Then the corresponding character X is unitary, 

and the irreducible subquotient generated by fx of the induced representation I x 
is tempered (Proposition 2.5). Thus, the corresponding spherical function Cx is 

in L 2+~ (G) for every e > 0. We already saw that  ~b x is an eigenvector; however, 

it does not belong to L2(G). In order to show that  a(z_) is in the spectrum, we 

twist ~b x to elements of L 2 (G) which are "almost" eigenvectors, and their almost- 

eigenvalues converge to a(z_). By Proposition 2.1 (and since ¢x is the spherical 

function associated to fx), Ak¢x -- Ak¢x where Ak = qk(d-k)/20k(Zl,... ,Zd). 
For every vertex x E B ° = G/K,  let w(x) denote the distance (in/31) of x from 

the origin [L0]. Recall [M, V.(2.2)] that  every double coset in K \ G / K  has a 

unique representative of the form diag(we~, . . . ,  w ~d) where t?l _> . . .  > gd-1 _> 

gd = 0; we call this representative of K g K  the t y p e  of gK, and note that  the 

number of vertices of this type is #(KgK).  Its distance from [L0] is equal to 
{nTd-2~ gl, so there are ~ d-2 J < (n+d)  d types of d is tancen.  For 5 > 0, define a 

function ¢5 x on 13 0 by ~b~x(x ) = (1 - 5)w(x)¢x(x ). For each n, let gn denote the 

type of the vertex of distance n for which #(KgnK)iCx(gnK)[ 2 is maximal. To 

see that  ~bhx E L2(B°), compute that  

O(3 

(1 - 2 = (1 - l e x ( x ) l  
xEt~o n=0 w(z)=n 

(3O 

Z (1 - 5)2n(n + d)dv(KgnK)iex(gnK)l 2, 
n- - - -0  

and the convergence follows from the root test once we show that  

lim sup (#(KgnK)tCx(gnK)I2) 1/n _< 1. But since Cx E L2+~(B °) for every e > 0, 

we have 

limsup(#(KgnK)lCx(gng)i2+e) 1/n <_ 1, 

and the result follows from #(KgnK) 1/n <_ qd by the lemma. By the defini- 

tion of Ak, Ak¢~(x) is a sum of ¢~(y) for neighbors y of x, and the distance 

of neighbors satisfies Iw(y) - w(x) I < 1. Since AkgZx - Ak~x = 0, it follows 
1 that  for some constant c, I imk¢~-  Ak~lI  _~ chil¢~II for every ~ > 5 > 0, 

showing that  (A1,. . . ,Ad-1) E ~d. Now let (A1,.. . ,Ad-1) E 64,  and let 

z l , . . . , Z d  E C be numbers satisfying qk(d-k)/2ak(Zl,... ,zd) = Ak, with the 

added property that  zl ""Zd = 1 (the zi are unique up to order). We need to 

show that  (zl , . . . ,Zd) E S, implying (,~l, . . . ,Ad-1) E O'(S). Let Vn E L2(B °) 
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be unit vectors such that Akvn - AkV~-~O, for all k, and define a homomor- 

phism w: H(G, K)-+C by [[Avn - w(A)vn][-+O (here we use the fact that the Ak 

are bounded and generate H(G, K)) .  Then w is continuous in the norm of the 

operators on L2(B°), and in particular Iw(A)l _< ]lA[[ for every A E H ( G , K )  
A n (otherwise take e such that Iw(A)] > IIA[[ + e, then ( ~ )  converges to zero 

A n but w ( ( ~ )  ) does not). For ~ _> 1, let He E H ( G , K )  be the characteris- 

tic function of K diag(w de, 1 , . . . ,  1)K. We show that while w(Ht) is a certain 

combination of z~ dt, the bound ]]Hdl is polynomial in g, thus implying that 

[zr[ _ 1 for every r. The vector ¢1 associated to the trivial character X = 1 is 

strictly positive (since f l  (x) > 0 for every x E G/Ix" and ¢1(x) = fK f l  (kx)dk), 
so if Ht¢l  = b¢1 and H~¢1 = b'¢1, we have [IH~l[ _< x /~  7 by Schur's criterion 

[P, p. 102]. Let p = ((d - 1 ) g , - g , . . . , - g ) .  From [M, (3.5)] and [M, (3.3)], and 

using the limit 

(2.8) lim k ~  1 Xk = 
(~1 ..... x~)-~(1 ..... 1) .= 1-LCk (Xk -- Xi) d 1 ' 

__ [d(g+l)-2~d(d-1)l < (dg)2dqd(d-1)~ SO we obtain bb' = (1 q-1)2(d-1)(d~l)~ d-1 J~ 
]]Htl[ < (dg)dq d(d-1)e/2. (Note that the action of H ( G , K )  on the spherical 

functions in [M] is via the multiplication of the Hecke algebra, unlike ours; see 

Equation (2.2).) In a similar manner, w(He) is equal to c-~(Ws) of [M, (3.3)], 
and has the form qd(d-1)e/: ~ = 1  arz~ de where 

(~ = I-[ z ( -  q--'__zr 
Zi -- Zr z¢r 

if all the zi are different (see [M, III.(2.2)]). From the continuity of w we proved 

d 

Z OlrZr d$ ~_ C~ d 
r = l  

for some constant C and every g. Order the zi by absolute value, so that  

Izll <_ "'" <_ ]zdl. Then a l  ¢ 0, and from the last bound it follows that 

[zll _> 1; but z l " ' Z d  = 1, so (Zl , . . . ,Zd)  E S. If the zi are not assumed to be 

different, one computes the coefficients of the z~ ~d by Equation (2.8), and the 

same arguments apply. | 

The sets Gd,k are explicitly described in [CS]: ~d,k is the simply connected 

domain with boundary the complex curve 

{qk(d-k)/2(Tk(eiO,... ,  e i0, e-(d-1)iO): ~ E [0, 2~]} 
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where i = ~Z-f. Notice that the equations Ak = qk(g-k)/~Ck(Zl,..., Zd) always 

have a solution, but unless (A1,..., Ad) E ~d, the zi do not have to be unitary-- 

even if each Ak E ~d,k. In terms of characters, Theorem 2.11 implies that the 

eigenvalues corresponding to fx (see Proposition 2.1) are in the simultaneous 

spectrum of (A1,. . . ,  Ad-1) acting on L 2 (B) iff X is unitary. This can be used to 

give a representation theoretic definition of being Ramanujan, as in Proposition 

1.5. 

Proof of Proposition 1.5: Assume every irreducible spherical infinite- 

dimensional sub-representation of L2(F\G(F)) is tempered. As F is cocom- 

pact, L2(F\G(F)) is a direct sum of irreducible representations. Let f E 

L 2 (F\G(F) ~If) be a non-trivial simultaneous eigenvector of the Ak, with Ak f = 

~kf. By Proposition 2.4, the Ak are determined by some unramified charac- 

ter X. Consider f as a K-fixed vector in L2(F\G(F)). Since the only finite- 

dimensional representations of G(F) are the trivial ones, the representation 

(fG(F))  is infinite-dimensional. Let V be an irreducible quotient of (fG(F)) 
in which f ~ 0; then V is an irreducible infinite-dimensional spherical sub-re- 

presentation of L~(F\G(F)), so by assumption V is tempered. It then follows 

from Proposition 2.5 that X is unitary, and so (A1,...,Ad-1) E Gd. In the 

other direction, let V be an irreducible spherical infinite-dimensional sub-repre- 

sentation of L2(F\G(F)); then its unique K-fixed vector f is a simultaneous 

eigenvector of the Ak, where Akf = Akf. By assumption (A1,..., Ad) E ®d. 

The eigenvalues induce a homomorphism w = w x for some unitary character X, 
and by Proposition 2.3, V is isomorphic to a subquotient of I x. Consequently, 

V is tempered. | 

2.4. BOUNDS ON THE SPECTRUM OF Ak ON L2(F\B). In the previous sub- 

section we computed the spectrum of (A1,..., Ad-1) in their action on L2(/3). 

For a discrete subgroup F <_ G, let specr\t~(A1,..., Ad-1) denote the spectrum 

of these operators in their action on L 2 (F\B) (which is a finite set). In this 

subsection we apply the classification of unitary representations of GLd(F) to 

give an upper bound on specr\t~(A1,... ,Ad-1) (which is independent of F). 

In addition we state an Alon-Boppana type theorem, due to W. Li, that for 

suitable families of quotients {Fi\B} of B, U specr~\~(At,. .-,  Ad-1) D ~d. Let 
f C L2(F\G/K) be a simultaneous eigenvector of the Ak. Lift f to L2(F\G), 

and recall that the representation (fG) is unitary (since the action of G on 

L2(F\G) is unitary) and spherical (since f is K-fixed). The unitary spherical 

representations were described by Tadid IT], as part of the classification of all 
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the unitary representations of GLd(F).  Such a spherical representation is in- 

duced by a character X = X1 ~)""  ® Xd, where the Xi are combined into blocks. 

For the Satake parameters (z~i, . . . ,  zi,) of each block X~I,. . . ,  X~, one of the 

following three options holds: either s = 1 and z~l E S 1 = {z C C: Izl = 1}; 

( z i l , . . . ,  z~) is of the form 

(q(S-1)/2 z, . . . ' qO-S)/2 z) 

for z C S 1 ; or (if s = 2s ~ is even) it is of the form 

(q(S'-l)/2+,~ z, . . . , qO-S')/2+C~ z, q(S'-l  ) /2-a  z, . . . , qO-S ' ) /2-~  z) 

for z E S 1 and 0 < a < 1/2. This set of possible parameters ( z l , . . . , Z d )  

determines the eigenvalues (A1,. . . ,  Ad-1) via Proposition 2.1. In particular, if 

d _> 3, we obtain for the non-trivial eigenvalues 

IAk] _< qk(d-k)/2 . ak(q(d-2)/2, .  . ., q(2-d)/2, 1) ~ qk(d-k-½) 

for every k < d /2  (and Ad-k = /~k). One can see that if d _> 3 then [Ak[ < [d]q 

for every non-trivial unitary representation (where [d]q denotes the number of 

subspaces of dimension k in F~q, which is the number of neighbors of color k of 

each vertex). In particular, the non-trivial eigenvalues of A = A1 + . . .  +Ad-1  are 

bounded away from the trivial one. This demonstrates the fact that PGLd(F)  

has Kazhdan property (T) and the quotient graphs F \ B  1 are expanders for every 

F [Lu2]. On the other hand, for d = 2 the eigenvalues ql /2al  (qa, q -a )  approach 

the degree q + 1 when a--+l/2,  in accordance with the fact that  PGL2(F)  does 

not have property (T). For the lower bound, we quote 

THEOREM 2.12 ([Li, Thm. HI): Let  X i  be a family of  finite quotients o r b  with 

unbounded injective radius. Then U specx~ (A1, . . . ,  Ad-1)  ~_ ~ d. 

This also follows from a multi-dimensional version of [GZ]. 

2.5. SUPER-CUSPIDAL AND SQUARE-INTEGRABLE REPRESENTATIONS. Let G 

denote the group GLd(F) or PGLd(F) ,  and Z = Z(G) its center. Let p: G--+ 

End(V) be a unitary representation. Recall that the m a t r i x  coeff ic ients  of p 

are the functions Pv,w: g ~ (p(g)v ,w)  where v , w  E V. A unitary representation 

of G is called supe r - cusp ida l ,  if its matrix coefficients are compactly supported 

modulo the center. Notice that the irreducible representations of GLI(F)  are 

all super-cuspidal (as the group equals its center). We say that a unitary re- 

presentation p is s q u a r e - i n t e g r a b l e ,  if Pv,w E L 2 ( G / Z )  for every v , w  C V.  



284 A. LUBOTZKY, B. SAMUELS AND U. VISHNE Isr. J. Math. 

A representation is square-integrable iff it is isomorphic to a sub-representa- 
tion of L2(G) [Kn, Prop. 9.6]. Note that super-cuspidal representations are 
square-integrable, and square-integrable representations are tempered. Let sld 
be any divisor, and let Ps (F) denote the parabolic subgroup corresponding to 
the partition of d into s equal parts. For a representation ¢ of GL[d/s](F), we 
denote 

(2.9) Ms(¢)=mOp,(F)* ,GLd(F)I.[" det I~-s)/2~b®l dee l(~-s)/2¢@ • " "@[ det [~-1)/2~)). 

The unique irreducible sub-representation of Ms([ det [~-1)/2¢) will be denoted 
by Cs(¢). It is known that if ~ is irreducible and super-cuspidal, then the in- 
duced representation Ms(I det 1~-1)/2¢) has precisely 2 s-1 irreducible subquo- 
tients, two of which (if s > 1) are unitary [HT, p. 32] (notice that MI(~) = ~b). 
These subquotients are Cs(¢), and a certain irreducible quotient, called the 
general ized S te inbe rg  r e p r e s e n t a t i o n  (or sometimes "special representa- 
tion") and denoted by Sps(¢). 

PROPOSITION 2.13 ([HT, p. 32], [Z]): For s > 1 and ¢ an irreducible super- 
cuspidal representation of GL~/s(F), Sps(¢ ) is square-integrable, and Cs(¢) 
is not tempered. Every square-integrable representation of GLd(F) is either 
super-cuspidal, or of the form Sps(¢ ) for a unique divisor s o ld  and a unique 
super-cuspidal representation ~; of GLd/s (F). 

Remark 2.14: If s > 1, Cs(¢) is not tempered for any unitary representation 
¢. 

Example 2.15: Let ¢: F x - + c  x be a character, and ¢ = I" I(~-d)/2¢ • Then 

Cd(~) = ¢ o det, which is one-dimensional. 

Proo~ Let B(F) denote the standard Borel subgroup of GLd(F). By definition, 
Cd(¢) is the unique irreducible sub-representation of 

Md(¢)='"UB(F) kl" 

which is the unitary induction of A-U2.  (¢ o det) to GLd(F). In particular, this 
representation, when restricted to B(F),  contains the representation ¢ o det, 
which is thus a sub-representation of Md(¢), so by definition Cd(¢) = ¢ o det. 
| 
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3. F r o m  local  t o  g loba l  
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3.1. THE GLOBAL FIELD. Let k be a global field, V = {v} its nonarchimedean 

discrete valuations, and )2c¢ the Archimedean valuations. For v • V, k~ is the 

completion, O~ = {x: v(x) > 0} the valuation ring of k.  (which is the closed 

unit ball of k. and thus compact), and P .  = {x: v(x) > 0} the valuation ideal. 

Note that  the ring of v-adic integers k N O.  of k is a local ring, with maximal 

ideal k N P~. Fix a valuation v0 • V, and set F = k~ o. Consider the intersection 

= {x • k: v ( .  • v -  { .o}) . (x)  _> 0} = n (k n O.). 

Recall that  the valuations of k = Fq (y) are all nonarchimedean. They are 

indexed by the prime polynomials of Fq [y] and 1/y. For a prime p the valuation 

is Vp(pif/g) = i when f and g are prime to p, and the valuation corresponding 

to 1/y is the minus degree valuation, defined by v l / y ( f /g )  = deg(g) - d e g ( f ) .  

If v0 = v 1/y then Ro = Fq [y]. For every x • k × we have that  

(3.1) vl /y(x) + ~ deg(p)vp(x) = 0, 
P 

so vo(X) <_ 0 for every x c Ro. As a result Ro is discrete in F.  It also follows that  

Ro N O.  o = Fq. For every v, choose a uniformizer w .  E R0, so that  v(w~) = 1. 

Then, the completion of k at v is Fq((w~)), and the local ring of integers is 

Fq [[w.]]. Note that  if Uo = v i /y ,  we can choose the uniformizers, w . ,  to be the 

prime polynomials of Fq [y], and W~o = 1/y. Let I denote the set of functions 

V--+N U {0}, such that  iv = 0 for almost all v and i .  o = 0. The ideals of Ro 

are indexed by functions ~'E I ,  in the following way: For i'E Z, we define 

(3.2) I ~ = { x E R o : v ( x ) > _ i , } =  N (kn~2~) ,  

where we make the notational convention that  p O = O. .  From our choice of 

the uniformizers, it follows that  if Vo = Vl/y,  then Ir is the (principal) ideal 

generated by 1-I.#.o w.i'. Notice that  for the zero vector {'= 0 (i~ = 0 for all v), 

we obtain the trivial ideal Io = Ro. Let × k. be the direct product  of the fields 

k.  over all the valuations v E 1; U V~ of k, and recall that  the ring A of addles 

over k is defined to be the restricted product 

(3.3) A = {x = (x~) G ×k~: v(x~) > 0 for almost all u}. 
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The field k embeds in A diagonally. In a similar manner to the construction of 

Ro, we define 

(3.4) R0 = {(xv)  • A: • V - > 0)  

:Fx  H 

The ideals of finite index of ~ are again indexed by Z, and are of the form 

(3.5) i7 = {(x~) • A: V(,  • V - {,o))U(xv) > iv), 

and with respect to the diagonal embedding, we have Ro = kM/~o and Ir = kM]r 

for every ~' • I .  In fact, /)o and /~r are the topological closures of R0 and It, 

respectively. 

3.2. STRONG APPROXIMATION. Let G be a connected, simply connected, 

almost simple linear algebraic group, defined over k (e.g. SLd), with a fixed 

embedding into GLr for some r. For a subring R of a k-algebra A, we de- 

note G(R) = G(A) N GLr(R).  For simplicity of notation (and as our applica- 

tions are mainly for positive characteristic), we assume ~(kv) is compact for 

all Archimedean places y. The diagonal embedding kc-~A, which is obviously 

discrete, induces a discrete embedding G(k)c--~(A). Let T be the set of valu- 

ations 0 such that ~(k0) is compact; this is a finite set [PR]. Fix a valuation 

~o • V - T, and let F = kvo denote the completion with respect to this special 

valuation. G(k) is a lattice of finite co-volume in G(A), and moreover, if T ~ 0, 

6(k) is a cocompact lattice [PR, Thm. 5.5]. 

THEOREM 3.1 (Strong Approximation [Pr], [PR]): The product 6(k)G(F) is 

dense in G(A). 

So for every open subgroup U of G(A), 

(3.6) G(k)G(F)U = G(A). 

COROLLARY 3.2: Let U C_ G(A) be a compact subgroup such that G(F)U is 

open, and 6(F)  M U = 1. Set Fu = G(k) M G(F)U. Then its projection to G(F) 

(which we will also denote by Fu) is discrete, and 

(3.7) 6(k)\g(A) /u~-rv\G(F). 

For example, if U = l-Lev-{,o} G(Ov) x l Ivev~ ~(kv), then r = r u  is the 
arithmetic subgroup ~(Ro). More generally, let i" = (iv) E 2: be a function 
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corresponding to an ideal ]~, and let 

U~= ~ I  ~(O' ,P~')  x 1-I G(k~) 
uEV-{vo} ~EV~ 

where ~(Ov, P~)  = Ker(~(Ov)-~G(Ov/P~')) is a congruence subgroup. Then 

~(F)U~ = G(I~o, ]~) = Ker(G(fito))~(Ro/Ir) is an open subgroup of ~(A), and 

we set 

(3.8) Fr = G(Ro, IF) = G(k) N G(F)Ur, 

called the principal congruence subgroup mod  I~ of G(Ro). Again, when 

T ~ 0, this is a cocompact lattice in ~(F). 

3.3. AUTOMORPHIC REPRESENTATIONS. The group ~(A) acts on the space 

L2(G(k)\G(A)) by multiplication from the right. The sub-modules are called 

automorphic representations of G(A). The closed irreducible sub-modules are 

said to be discrete, or to belong to the discrete spectrum. Its complement is 

called the continuous spectrum. If T ~ 0 then there is no continuous spec- 

trum. Let K~ = ~(0~) and recall that for every (g~) ¢ G(A), g~ E Kv for 

almost all u. Given irreducible representations Ir~: G(k . )~  End(V~), with all 

but finitely many being K.-spherical, one defines the restricted tensor product 

7c = ®Try: G(A)--+ End(®'V,) [Bu]. 

A fundamental theorem [Bu, Thm. 3.3.3] states that any irreducible automor- 

phic representation of ~(A) is isomorphic to such a restricted tensor product. 

The representations 7~ in 7r = ®Tr. are called the (local) components of 7c, and 

since 7~ is irreducible, they are also irreducible. Moreover, ~ is admissible iff all 

its components are. 

PROPOSITION 3.3: Assume that G(k~) is non-compact. //:the component ~ of 
an irreducible automorphic representation ~ of ~(A) is trivial, then 7r is trivial. 

Proof: Let 7r = ®lrv be an automorphic representation acting on V _~ 

L2(6(k)\G(A)), where n.  is trivial. For f E V (assumed to be K-finite, see 

[Bu, Thm. 3.3.4]), f is 6(k~)-invariant from the right and 6(k)-invariant from 

the left. However, by Strong Approximation, ~(k~)G(k) is dense, so f must be 

constant everywhere, making ~ trivial. | 

Recall that an irreducible representation is Ur-spherical if it has a Ur-fixed 

vector. We assume ~(F) is non-compact where F = kvo. 
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PROPOSITION 3.4: Let ~r be an irreducible, Ur-spherical automorphic represen- 

tation ofF(A).  Then ~r~ o is a sub-representation of L2(Fr\G(F)). Conversely, 

if p _< L2(Fr\G(F)) is irreducible, then there exists an irreducible Ur-spherical 

automorphic representation 7r of G(A) such that 7r~ o is isomorphic to p. 

The second assertion is seen by lifting a function f 6 Vp (where Vp is the re- 

presentation space) from Fr\G(F) to G(k)\~(A) using Corollary 3.2, and taking 

7r to be an irreducible quotient of the (right) G(A)-module generated by f .  

3.4. THE CONDUCTOR. For a representation p of G(k~), the c o n d u c t o r  of p, 

cond(p) = i, is defined to be the minimal i > 0, for which there is a ~(O~, P~)- 

fixed vector in V (such an i exists since the representation is admissible). In 

particular, cond(p) = 0 iff p is spherical. Now let 7r be an irreducible auto- 

morphic representation of G(A). Since almost all the local components are 

spherical, cond(Tr~) = 0 for almost every ~,. We thus let cond(zr) be the function 

V--+NU {0) defined by i~ = cond(Tr~) (note that  i'is not in Z in general, as we 

do not assume i~ 0 = 0). 

Remark 3.5: Let ~" = cond(~). Then H = ~(O~o,P~o°)U~ is the maximal 

principal congruence subgroup for which ~ has an H-fixed vector. 

The results of this section will be used later for non-simply connected cases, 

which requires some minor modifications. Let G be a connected, almost sim- 

ple algebraic group over k. Let H: ~ G  be its simply connected cover. Then 

H(~(A))___G(A) and the quotient is abelian (of finite exponent). In this situa- 

tion, Proposition 3.3 becomes 

PROPOSITION 3.6: Assume that G(k~) is non-compact. / / ' the component 7~ of 

an irreducible automorphic representation lr of G(A) is one dimensional, then 

7r is one dimensional. 

4. Global automorphic representations 

Let G be an almost simple, connected algebraic group defined over k, where k is a 

global field of arbitrary characteristic. The discrete spectrum of automorphic re- 

presentations is composed of cuspidal and residual representations. The cuspidal 

representation space is comprised of functions f E L2(G(k) \G(A)  ) which satisfy 

fN(k)\N(A) f (ng )dn  = 0 for every g E G(A) and for every N, where N is a 

unipotent radical of a parabolic subgroup of G. Since the cuspidal condition 

involves integration from the left, and the action is by right translation, this is 

a sub-representation space. The other discrete irreducible representations are 
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called residual. Recently, L. Lafforgue has proved the following version of the 

Ramanujan conjecture: 

THEOREM 4.1 (ILl, [R]): Assume k is of positive characteristic and G = GLd. 

Let 7r = ®Tr~ be an irreducible, cuspidal representation with ~nite central char- 

acter. For all v, if 7r~ is spherical then 7r~ is tempered. 

4 .1 .  T H E  RESIDUAL SPECTRUM. All the one-dimensional representations are 

residual, and when G = GLd and d is prime these are the only residual represen- 

tations. If d is not a prime, the other residual representations can be described 

in terms of the cuspidal representations of smaller rank, as follows: An element 

(a~) E A is invertible only if for almost all u, a .  E O~ x . We can thus define 

an absolute value on A x by I(a~)lA = 1-I la, lk~, which is a finite product. The 

modular function for parabolic subgroups of GL(A) is defined as in the local 

case (see Equation (2.3), with I det (a)IA for each block), and likewise we have 

a unitary induction from parabolic subgroups, with similar properties to the 

local case. Let s > 1 be a divisor of d, and let 7r be any cuspidal automorphic 

representation of GLd/s(A). The representation 

_ .GL(A) 
(4.1) Ts(Tr) = lndp~(A ) (I det I(A~-s)/2~ • i det , (a-s) /2~e'"e I det 1(,~-~)/2~) 

has a unique irreducible sub-representation J(Ts(Tr)) (here Ps(A) is the parabolic 

subgroup of GLd(A) associated to the decomposition into s blocks of size d/s). 

THEOREM 4.2 ([MW]): TheresidualspectrumofL2(GLd(k)\GLd(A))consists 
of the representations Y(Ts(Tr)) for proper divisors sld and 7r a cuspidal repre- 

sentation of GLd/s (A). 

Comparing Equations (2.9) and (4.1), the local u-component of J(Ts(Tr)) is 

seen to be the (unique) irreducible sub-representation of Ms(Try), namely C(Tr~) 

which was defined in Subsection 2.5. From Remark 2.14 we then obtain 

COROLLARY 4.3: (a) Every local component of a residual representation is non- 

tempered. (b) f f  7r & an irreducible automorphic representation of GLd where 

one of its local components is tempered, then ~r is cuspidal (and in positive 

characteristic, all of its spherical components are tempered by Theorem 4.1). 

4.2. THE JACQUET-LANGLANDS CORRESPONDENCE. Let D be a division 

algebra of degree d over k, and let D ,  = D®kk~. Then by the Albert-Brauer- 

Hasse-Noether theorem, D~-Md(kv) for almost every completion k~. Let G' = 

DX, which is a form of inner type of G = GLd. Let T denote the (finite) set 
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of valuations 0 such that D®k~ is not split. We assume that for every 0 E T, 

D®ko is a division algebra. There is an injective correspondence, called the 

local Jacquet-Langlands correspondence, which maps every irreducible, unitary 

representation p' of G'(ke) (8 E T) to an irreducible, unitary square-integrable 

(modulo the center) representation p = JL0(p') of G(ke) (see [Ro] or [HT, p. 29] 

for details). If ¢ is a character of k~, then [HT, p. 32] 

(4.2) (1-d)/2~,~ 
JLe(¢ o det) = SPd(]. k~ ~'J 

where SPd is defined in Subsection 2.5. Recall by Example 2.15 that 

Cd(]" ]~1/d)/~¢) is a one-dimensional representation. The global Jacquet-Lang- 

lands correspondence maps an irreducible automorphic representation 7r' of 

G'(A) to an irreducible automorphic representation 7r = JL(ld) of G(A) which 

occurs in the discrete spectrum (see [HT, p. 195]). If L, ¢ T, then 

JL(Tr').-~Tr'~. 

Note that the restrictions of cond ~r and cond 7r' to V - T are equal. The sit- 

uation in the other local components is as follows: let ~ E T, and consider 

the component 7r~ of 7d. The local Jacquet-Langlands correspondence maps 

lr~ to an irreducible square-integrable representation JLe(Tr~) of G(k0), which is 

by Proposition 2.13 a generalized Steinberg representation, of the form Sp8 (¢) 

for some divisor sld and super-cuspidal representation ¢ of GLd/s(ko ). Then 

JL(Tr')e is isomorphic to either Sps(~P) or Cs(~P). 

THEOREM 4.4 ([HT, p. 196]): The image of JL (for a fixed D) is the set of 
irreducible automorphic representations 7r of GLd(A) such that 7r occurs in the 
discrete spectrum and for every ~ E T there is a positive integer se[d and 
an irreducible super-cuspidal representation Ce of GLd/s~ (ke) such that Ire is 

isomorphic to either Sps ~ (¢0) or Cs~ (¢e). 

Throughout the book [HT], the authors assume characteristic zero. However, 

see Remark 1.6. 

5. Proofs  of  Theorems  1.2 and 1.3 

Let k be a global field of prime characteristic, D a division algebra of degree d 

over k, G' the algebraic group D×/Z  × where Z is the center, and G = PGLd. 

Let T denote the set of ramified primes, namely valuations 0 for which Do = 

D ® k0 is non-split. We again assume that for such primes, De is a division 
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algebra. It follows that G'(ke) is compact for ~ 6 T. The valuation 0 extends 

uniquely to a valuation of De, and we let (gO0 denote the ring of integers there. 

The group G' ((90) depends on the specific embedding G' (k)~-+GLr (k), namely, 

G'(ke) is the subgroup of GLr(ke) defined by the equations defining G'(k),  and 

G' (Oe) = G' (ke) A GLr ((ge). For most of our applications the precise embedding 

is irrelevant (G'((ge) is well defined up to commensurability anyway). However, 

for Theorem 1.3(b), we need the embedding to satisfy 

(5.1) c'(oe) D x/k  
- -  Do ' 

where both groups are viewed as subgroups of G'(ke) = (m®kko)X/k~, which 

is embedded in GLr(k0) for some r. 

This condition is in fact satisfied by a natural embedding. Let E be a cyclic ex- 

tension of dimension d over k, which is unramified at every 0 6 T (the existence 

of E is guaranteed by Grunwald's theorem for function fields [AT, Chap. 10]). 

From the Albert-Brauer-Hasse-Noether theorem it follows that E is a splitting 

field of D, making D a cyclic division algebra. Moreover, there is an element 

z 6 D such that D = E[z] and conjugation by z is an automorphism of E, 

generating Gal(E/k) .  

Let e l , . . . ,  ed be an integral basis of E / k  (with respect to every 8 6 T). Then, 

for every valuation 8 6 T, O~ o = ~ (goei, where Ee = E®kko and OEo is its 

ring of integers. Now, z can be chosen so that OD~ = OEo [z] = ~ i , j  Ooei zj" 

The left regular representation of D via the basis {eiz j } defines an embedding 

D × ~GLd2(k ) which sends O × into GLd2 (Oe) (and central elements to scalar Do 
matrices). Composing this with the adjoint representation of PGLd 2(k) (into 

GLd4 (k)), we obtain an embedding of G'(k) = D X/k  × which satisfies (5.1). 

LEMMA 5.1: F°r O 6 T,  O×Do is normal in D~ , and D ox / k  O× (~DoX ~=Z/d. 

Proof." The uniformizer w of k0 is a uniformizer for E0 as well, and (by choosing 

the generator a 6 Gal(Eo/ke) appropriately) we may assume De = Ee[z] where 

z d = vz and conjugation by z induces a. Since z normalizes (9~,, this is a 
normal subgroup of D~. 

The elements of value zero in (gD~ are invertible there, so every element of 

D~ is of the form cz i for some c 6 (9 × and an integer i. Such an element Do 
is equivalent to z ~ in × x × z d D8/ko (gDo, and = w 6 k~.. Finally, z i induces a 

non-trivial automorphism on E for every 0 < i < d, so the order of z modulo 

the center is equal to d. | 

By our assumption (5.1), the lemma implies that G'(ke) /G' (Oe)  is a quotient 

of Z/d .  
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For i'E Z set F~ = G'(Ro,I~), as in Equation (3.8). For g, f E  2:, we say that  

i'<_T f i f  i ,  <_ fv for every v E ~ -- T. 

PROPOSITION 5.2: Let ~ E Z. The complex F~\B is Ramanujan iffevery spher- 

iced infinite-dimensioned ~o-component of an irreducible automorphic discrete 

representation 7r' of G ~ (A) with cond(~r') <_T ~ is tempered. 

Proof." This follows immediately from Propositions 1.5 and 3.4 (and Remark 

3.5). , 

We can now prove the theorems stated in the Introduction. 

Proof of Theorems 1.2and 1.3(a): Write the given ideal of R0 as I = Irfor  i'E Z 

(see Equation (3.2)). Let 1r r be an irreducible discrete automorphic representa- 

t is spherical and infinite- tion of G~(A) with condTd ~T ~ and assume p = 7rvo 

dimensional. By Proposition 5.2, F ( I ) \B  is Ramanujan iff in all such cases 7r~o 

is tempered. By the Jacquet-Langlands correspondence, there is an irreducible 

for automorphic sub-representation 7r of L2(G(k)\G(A)) such that  7r. = 7r. 
t Assume d is prime; then all the infinite- every v ¢f T. In particular, 7r~ o = Trio. 

dimensional automorphic representations of G(A) are cuspidal, so 7r is cuspidal. 

By Lafforgue's Theorem 4.1, the components of a cuspided representation are 

tempered. Therefore, p = 7rvo is tempered, and Theorem 1.2 is proved. Now let 

d be arbitrary, and assume io = 0 for some t? C T (namely I is prime to 8). Thus, 

7r~ has a G'(Oo)-fixed vector. By Lemma 5.1, G'(Oo) is normal in G'(k0), and 7r~ 

is an irreducible representation of the cyclic quotient, so it is one-dimensional. 

Write 7r~ = ¢ o det for a suitable character ¢: k ~ C  (of order d), where here 

det stands for the reduced norm of G'(ko). By Equation (4.2) we have that  

JL0(lr~) = JL0(¢ o det) = SPd(¢ ) for the character ¢ = 1" I(1-d)/2¢ of k~. By 

Example 2.15, Cd(¢) is one-dimensional. As mentioned in Subsection 4.2, 7r0 

is isomorphic to either Sps (¢) or Cs (¢), but 7r0 cannot be one-dimensional (by 

Remark 3.6). Therefore, ~0 = Sp~(¢), which is square-integrable (Proposition 

2.13) and, in particular, tempered. Now, Corollary 4.3(a) implies that  7r is 

cuspided, and by Theorem 4.1, 7r~ o = p is tempered too. | 

Proof of Theorem 1.3(b): By Proposition 5.2, we need to find an irreducible 

is spherical and non- sub-representation 7r' of L2(G'(k)\G'(A)) such that  rr~o 

tempered. Then Ir~o would be a sub-representation of L2(G'(R0, I)\G(F)) for 

some I<~Ro, and G'(Ro, I ) \ B  would not be Ramanujan. We use the following 

result, which is a variant of a special case of [V, Thm. 2.2]. 
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PROPOSITION 5.3: Let T = {01,...,Or} and l] 1 ¢ T be valuations of k. For 
i = 1 , . . . ,  t, let g)i be a super-cuspidal representation of PGLm(ko~), where 
m > 1 is fixed. Then, there exists an automorphic cuspidal representation 7r 

of PGLm (A), such that zro~ = ¢i for i = 1 , . . . ,  t, and 7r,, is spherical for every 
valuation v' ~ T U {t,1 }. 

Proof: Here we let G denote the group PGLm. Let fo, be matrix coefficients 

of ¢i, and let Uo, denote the (compact and open) support. For v ¢~ T U {vl} let 

U. = G(O.) ,  and choose an open compact subgroup U. 1 of G(k.1) such that 

U = rI u .  c_ G(A) intersects G(k) only in the identity. For v # 01 , . . . ,0 t ,  let 

f .  be the characteristic function of U.. Let f = ® i .  E L:(G(A)). Define an 

operator Rf: L ~ (G (k) \G (A))--+L 2 (G (k) \G  (A)) by 

= f f (g- lx)~(x)dx .  Rf~(g) 
JG (A) 

The image of R: is in the discrete spectrum. Let 7r be an irreducible represen- 

tation in the image; then 7r0, = ¢i and, in particular, 7r is cuspidal. Moreover, 

f . ,  is a fixed vector of 7r., so these are spherical for every v' • T U {vl}. It 

remains to show that Rf  # 0: 

R::(9) = f K:(g, z)~(x)dx 
JG (k)\V(A) 

where Kf(g,  x) = ~-,-rCq(k) f (g-17x) ,  which is a finite sum since f is compactly 

supported. But KI(1, 1) = f(1)  + ~l#~eG(k) f (7)  = 1, showing that K f  # 0 
and R: # O. | 

For T we take the usual set of places in which D remains a division algebra, 

and we choose an arbitrary V l¢  TU{v0}. Now pick any proper divisor s ofd. For 

every i = 1 , . . . ,  t choose a super-cuspidal representation g;i of PGLd/s (ko,), and 

let ~r be the representation of PGLd/s (A) given by Proposition 5.3; in particular, 

zr, o is spherical. Then let fr = T~(~r), as in Equation (4.1), and let ~ = J(#)  be 

its unique irreducible sub-representation. By Proposition 4.2, ~ is in the residual 

spectrum, and in particular -f-o is spherical (since ~o # "1) and non-tempered 

(Corollary 4.3(a)). Now, for every i = 1 , . . . ,  t, -fro, = C~(] det ](~-s)/2¢i) (see 

the remark preceding Corollary 4.3), so by Theorem 4.4, ~ is in the image of 

the Jacquet-Langlands correspondence, corresponding to a representation -f' of 

G'(A) where G' = D × / Z  x . But -f.o = -f'.o, so this component is spherical and 

not tempered. | 
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6. O u t e r  fo rms  

Theorem 1.2 (especially when compared to Theorem 1.3(b)) may suggest that  

if d is an odd prime, then every finite quotient of the Bruhat-Tits  building 

13 = t3d(F) is Ramanujan, where F is a local field. Indeed, if Y is such a 

finite quotient of B, then the fundamental group F1 = ~rl(Y) acts on /3, the 

universal cover of Y, and Y = F1V 3. By a well known result of Tits, Aut(B) is 

G = PGLd(F),  up to compact extension. It seems likely that  F1 has a subgroup 

of finite index F which is contained in G, and the corresponding finite cover of 

Y can be obtained as F \ G / K .  Now, by Margulis' arithmeticity theorem [Ma2], 

F is an arithmetic lattice of G. A well known conjecture of Serre [Se2] asserts 

that  arithmetic lattices of G (where d > 3) satisfy the congruence subgroup 

property. This essentially means that  every finite index subgroup is a congruence 

subgroup. If F is of inner type, our Theorem 1.2 applies to it, and shows that  the 

quotients are really Ramanujan. However, there are other arithmetic subgroups 

(see, for example, the classification of the k-forms of GLd in [Sel, III.1.4]). The 

outer forms of PGLd all come from the following general construction: let k be 

a global field, k ' / k  a quadratic separable extension, and A a kl-central simple 

algebra with an involution u ~ u* which induces the non-trivial automorphism 

of kl /k  on the center of A. Let Nk,/k denote the norm map. The algebraic group 

G' = {u E A: uu* = 1} /Z  (where Z = Ker(Nk,/k ) is the center) gives a form of 

PGLd. Now, if d is a prime, A may be either a division algebra, or the matrix 

algebra Md(k'). The second case corresponds to Hermitian forms [PR], i.e. 

G' is PGUd(q, k') = {a E Md(k'): q(a(v)) = q(v)} /Z  of operators preserving the 

Hermitian form q: (k~)d--+k t. In this situation, the involution on A is a ~ b-15tb, 

where b is a skew-symmetric matrix representing q. But, if char k = p > 0, every 

Hermitian form over k represents 0 if d _> 3. Indeed, this is known to be true 

for local fields [Sc, Sec. 4.2] and by the Hasse Principal [Sc, Sec. 4.5], this is also 

true for k. Now in order to form a cocompact arithmetic lattice F in PGLd(F),  

the form G ~ should be anisotropic (i.e. have k-rank zero), but if q represents 0 

over k, the k-rank is greater than zero. Thus, there are no arithmetic lattices of 

Hermitian form type if d _> 3 and F is of positive characteristic (the situation is 

different for characteristic zero, see below). On the other hand, the case when 

A is a division algebra is possible (e.g. the cyclic algebra A = Fq~ (t)[zI zd = t], 

where z induces the Frobenius automorphism on Fq~, is a division algebra with 

center k t = Fq(t), and has an involution defined by z* = z -1 and a* = a for 

a E IFqa, which is non-trivial on k~). We do not know if Theorem 1.2 is valid in 

this case, but if it is true then together with Serre's conjecture this would imply 
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the remarkable possibility that  if cha rF  > 0 and d _> 3 is a prime, then all 

the finite quotients of t3d(F) are Ramanujan. We leave it, however, as an open 

problem. For d = 2, i.e. PGL2(F),  all arithmetic lattices are of inner type, as 

the Dynkin diagram of A1 does not have graph automorphisms, so Theorem 1.2 

applies for all lattices (a result which has been proved before by Morgenstern 

[Mo]). Still we have 

PROPOSITION 6.1: 3fled = 2, for every nonarchimedean local field F, of any char- 

acteristic, PGL2 (F) has cocompact (arithmetic) lattices, such that the quotient 

F\B2(F) of the tree 132(F) is not Ramanujan. 

Proof'. The group PGL2(F) has cocompact (arithmetic) lattices, and these 

are virtually free (cf. [Se3]). Let F be a free cocompact lattice in PGL2(F),  

so F' = IF, F] is of infinite index in F. Let F,~ be a sequence of finite index 

subgroups of F, such that  N Fn = F'. By [Lul, Sec. 4.3], the graphs Fn\B are 

not expanders, let alone Ramanujan graphs. Of course, in light of Theorem 1.2 

(or [Mo]) for positive characteristic, and [Lul, Whm. 7.3.1] (see also [JL]) for 

zero characteristic, almost all the Fn are non-congruence subgroups. | 

LEMMA 6.2: Let F be a local nonarchimedean field of characteristic zero. For 

every d >_ 2, there exists a number field k with a quadratic extension k' such 

that k C_ k ~ C_ F, and an anisotropic Hermitian form q of dimension d over k~/k. 

Proof: Let p be the prime such that  QB c F. Choose a natural number 5 > 0 

such that  - 5  is a quadratic residue modulo p if p is odd (e.g. 5 = p - 1), and 
take ~ = 7 i f p  = 2. Let k = Q and k' = Q[~/---5], and let u F-~ fi denote 

the non-trivial automorphism of k~/k. Let q(u l , . . .  ,ud) = ulffl + "" + Udffd. 

Writing ui = x~ + x/%-~y/for xi,y~ • Q, we have that  

=xl +5(y  +...+yD, 

which does not represent zero even over IK | 

Proof of Theorem 1.4: Let kr/k be the quadratic extension and q the anisotropic 

Hermitian form as in the lemma, and let G r = PGUd(q) and G = PGLd. Then 

G'(F)~-G(F), because k' C_ F,  so k'®kF = F x F and 

G'(F) = {(a, b) • GLd(F) x GLd(F): b = a * } / Z  × = G(F).  

Choose F = G'(Ro) (where Ro is as defined in Equation (1.2)) and Vo is the 

valuation on F. This is a cocompact lattice of G ' (F)  since G'(k) = PGUd(q, k) 
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has rank zero. Moreover, if we let ql denote the sum of the first d -  1 terms in a 

diagonal form of q, then ql does not represent zero, and setting H r = PGUd(ql), 

H'(F) = PGUd(qx, F) embeds in G'(F) as (d - 1) × ( d -  1) matrices (and is 

isomorphic to H(F) = PGLd_I(F) for the same reasons as for q). We deduce 

that A = FNH'(F) is a cocompact lattice in H'(F) = H(F). By Proposition 1.5 

it remains to find a spherical non-tempered sub-representation p of L 2 (FI \G(F)) 

for a congruence subgroup FI. Now, since A\H(F)  is compact, 

L 2 (GLd-I(F)\GLd(F)) = L 2 (H(F)\G(F))  C L 2 (A\G(F)). 

The group GLd(F) acts on V ® V* where V = F d and V* is the dual 

space. Fixing el E V, the stabilizer of el G e{ is isomorphic to GLd_I(F), so 

L2(PGL,~_I(F)\PGLd(F)) C_ L2(V ® V*)~-L2(V®F2). Now, using the action 

of GL4 x GL2 on V®F 2, one can prove that L2(V®F 2) is the direct integral of 

pr®p over tempered p E GL2 (the unitary dual), where p' is the representation of 

GLd obtained by inducing p®idd-2 from GL2. In particular, pr is not tempered 

if d _> 4 (since ids is non-tempered if s _> 2). Thus, L2(PGLd_I(F)\PGLd(F)) 

has spherical non-tempered sub-representations. We thank R. Howe for this 

argument. For an ideal I<~Ro, let AI = AF(I). The AI have finite index in 

F and so are cocompact in G(F). Moreover, ~ I  A1 = A. Now, L2(A\G(F)) 

is weakly contained in [.JlL2(AI\G(F)) [BLS1], [BLS2], so for some I<~Ro, 
L2(AI\PGLd(F)) contains a spherical non-tempered sub-representation (which 

is discrete since At is cocompact). It follows that AI\B(F) as well as F(I)\/3 

are non-Ramanujan. | 

A final remark is in order: so far, all the Ramanujan complexes constructed 

were quotients of-4d-1 (F) where F is an arbitrary local field of positive char- 

acteristic. For characteristic zero the problem is still open, except for d = 2. Of 

course, one hopes eventually to define and construct Ramanujan complexes as 

quotients of the Bruhat-Tits buildings of other simple groups as well. 

References  

[AT] 
[B1] 

In2] 

E. Artin and J. Tate, Class Field Theory, W. A. Benjamin, New York, 1967. 

C. M. Ballantine, Ramanujan type buildings, Canadian Journal of Mathe- 
matics 52 (2000), 1121-1148. 

C. M. Ballantine, A hypergraph with commuting partial Laplacians, Canadian 
Mathematical Bulletin 44 (2001), 385-397. 



Vol. 149, 2005 RAMANUJAN COMPLEXES OF TYPE A~ d 297 

[Bu] 

[BLS1] 

[BLS2] 

[c] 

[Cw] 

[CM] 

[CS] 

[csz] 

[Gr] 

[GZ] 

[nw] 

[JL] 

[Kn] 

[L] 

[LRS] 

[Li] 

[Lull 

D. Bump, Automorphic Forms and Representations, Cambridge Studies in 

Advances Mathematics 55, Cambridge University Press, 1998. 

M. Burger, J.-S. Li and P. Sarnak, Ramanujan duals and automorphic 
spectrum, unpublished, 1990. 

M. Burger, J.-S. Li and P. Sarnak, Ramanujan duals and automorphic spec- 
trum, Bulletin of the American Mathematical Society 2{} (1992), 253-257. 

P. Cartier, Representations of p-adic groups: A survey, Proceedings of 

Symposia in Pure Mathematics 33 (1979), 111-155. 

D. I. Cartwright, Spherical harmonic analysis on buildings of type ~tn, 
Monatshefte ffir Mathematik 133 (2001), 93-109. 

D. I. Cartwright and W. Mtotkowski, Harmonic analysis for groups acting 
on triangle buildings, Journal of the Australian Mathematical Society (A) 56 

(1994), 345-383. 

D. I. Cartwright and T. Steger, Elementary symmetric polynomials in num- 
bers of modulus 1, Canadian Journal of Mathematics 54 (2002), 239-262. 

D. I. Cartwright, P. Sol~ and A. 7,uk, Ramanujan geometries of type .4,~, 
Discrete Mathematics 269 (2003), 35-43. 

Y. Greenberg, On the spectrum of graphs and their universal covering 
(Hebrew), Doctoral Dissertation, The Hebrew University of Jerusalem, 1995. 

R. I. Grigorchuk and A. Zuk, On the asymptotic spectrum of random walks 
on infinite families of graphs, in Random Walks and Discrete Potential The- 
ory (Cortona, 1997), Symposia Mathematica XXXIX, Cambridge University 
Press, Cambridge, 1999, pp. 188-204. 

R. Harris and R. Taylor, The Geometry and Cohomology of Simple Shimura 
Varieties, Annals of Mathematics Studies 151, Princeton University Press, 
2001. 

B. W. Jordan and R. Livne, The Ramanujan property for regular cubical 
complexes, Duke Mathematical Journal 105 (2000), 85-103. 

A. W. Knapp, Representation Theory of Semisimple Groups, Princeton Land- 
marks in Mathematics, Princeton University Press, Princeton, N J, 1986. 

L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands (French), 

Inventiones Mathematicae 147 (2002), 1-241. 

G. Laumon, M. Rapoport and U. Stuhler, D-elliptic sheaves and the Langlands 
correspondence, Inventiones Mathematicae 113 (1993), 217-338. 

W.-C. W. Li, Ramanujan hypergraphs, Geometric and Functional Analysis 

14 (2004), 380-399. 

A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, 
Progress in Mathematics 125, Birkh~iuser, Basel, 1994. 



298 

fLu2] 

[LPS] 

[LSV] 

[M] 

[Mall 

[Ma2] 

[Mo] 

[MW] 

[e] 
[PR] 

[Pr] 

[R] 

[Ro] 

[sal 

[Sc] 

[Sel] 

[Se2] 

A. LUBOTZKY, B. SAMUELS AND U. VISHNE Isr. J. Math. 

A. Lubotzky, Cayley graphs: eigenvalues, expanders and random walks, in 
Surveys in Combinatorics (Stifling), London Mathematical Society Lecture 
Notes Series 218, Cambridge University Press, 1995, pp. 155-189. 

A. Lubotzky, R. Philips and P. Sarnak, Ramanujan graphs, Combinatorica 8 
(1988), 261-277. 

A. Lubotzky, B. Samuels and U. Vishne, Explicit constructions of Ramanujan 
complexes of type Ad, European Journal of Combinatorics, to appear. 

I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, 
Oxford Mathematical Monographs, Oxford University Press, 1995. 

G. Margulis, Explicit group-theoretic construction of combinatoric schemes 
and their applications in the construction of expanders and concentrators 
(Russian), Problemy Peredachi Informatsii 24(1) (1988), 51-60; Engl. transl.: 
Problems of Information Transmission 24(1) (1988), 39-46. 

G. Margulis, Discrete Subgroups of Semisimple Lie Groups, Results in 
Mathematics and Related Areas (3), 17, Springer-Verlag, Berlin, 1991. 

M. Morgenstern, Existence and explicit constructions of q + 1 regular Ra- 

manujan graphs for every prime power q, Journal of Combinatorial Theory, 
Series B 62 (1994), 44-62. 

C. Moeglin and J.-L. Waldspurger, Le spectre rdsidual de GLn, Annales 
Scientifiques de l'l~cole Normale Sup~rieure, 4 e sbrie 22 (1989), 605-674. 

G. K. Pedersen, Analysis Now, GTM 118, Springer, New York, 1989. 

V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Pure 
and Applied Mathematics 139, Academic Press, Boston, 1994. 

G. Prasad, Strong approximation for semi-simple groups over function fields, 
Annals of Mathematics 105 (1977), 553-572. 

M. Rapoport, The mathematical work of the 2002 Fields medalists: The 
work of Laurent Lafforgue, Notices of the American Mathematical Society 
50 (2003), 212-214. 

J. Rogawski, Representations of GLn and division algebras over a p-adic field, 
Duke Mathematical Journal 50 (1983), 161-196. 

A. Sarveniazi, Ramunajan (nl,n2,.. . ,nd-1)-regular hypergraphs based on 
Bruhat- Tits buildings of type fftd-1, arxiv.org/math.NT/0401181. 

W. Scharlan, Quadratic Forms, Queen's Papers in Pure and Applied Mathe- 
matics 22, Queen's University, Kingston, Ontario, 1969. 

J.-P. Serre, Galois Cohomology, (translated from the 1964 French text), 
Springer, Berlin, 1996. 

J.-P. Serre, Le probl~me des groupes de congruence pour SL2, Annals of 
Mathematics 92 (1970), 489-527. 



Vol. 149, 2005 RAMANUJAN COMPLEXES OF TYPE Ad 299 

[Se3] 

[W] 

IV] 

[z] 

J.-P. Serre, Trees, 2nd edition, Springer Monographs in Mathematics, 

Springer, Berlin, 2003. 

M. Tadi~, An external approach to unitary representations, Bulletin of the 

American Mathematical Society 28 (1993), 215-252. 

M. F. Vigneras, Correspondances entre representations automorphes de GL (2) 
sur une extension quadratique de GSp(4) sur Q, conjecture locale de Lang- 
lands pour GSp(4), Contemporary Mathematics 53 (1986), 463-527. 

A. V. Zelevinsky, Induced representations of reductive p-adic groups II: on 
irreducible representations of GL~, Annales Scientifiques de l'Ecole Normale 

Sup~rieure 13 (1980), 165-210. 


