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We prove that there exist k � � and 0 < � � � such that every
non-abelian finite simple group G, which is not a Suzuki group, has
a set of k generators for which the Cayley graph Cay(G; S) is an
�-expander.

expander graphs � Ramanujan complexes

Let X be a finite graph and 0 � � � �. Then X is called an
�-expander if for every subset A of the vertices of X with �A� �

(1�2)�X� we have ��A� � ��A�, where �A denotes the boundary
of A, i.e., the vertices of distance 1 from A.

Expander graphs play an important role in computer science
and combinatorics, and many efforts has been dedicated to their
constructions (cf. ref. 1, the references therein, and ref. 2). Many
of these constructions are of Cayley graphs, and in particular
various infinite families of finite simple groups have been shown
to be expanding families.

A finite group G is called an �-expander with respect to a
generating subset S if the Cayley graph Cay(G; S) is an
�-expander. We will say that an infinite family G of groups is a
family of expanders if there exists k � � and 0 � � � � such
that every group G � G has a subset S of k generators with
respect to (w.r.t.) which G is an �-expander. In this situation we
also say that the groups G � G are expanders ‘‘uniformly.’’ Until
recently all known such families consisting of simple groups were
of bounded Lie rank (cf. refs. 1 and 3), a fact that has raised
speculation that this is the only possibility (see refs. 4 and 5).

It is easy to see that the diameter of each graph Xi from an
expander family {Xi} is most c log�Xi� (where c is a constant). In
ref. 6 it was shown that every non-abelian finite simple group has
a set S of seven generators for which the Cayley graph Cay(G;
S) has a diameter bounded by C log(�G�) for an absolute constant
C. It was conjectured there that one can even make all finite
simple groups expanders uniformly, although, as observed by Y.
Luz (see ref. 4), the generators used in ref. 6 do not give rise to
expanders.

The main goal of this note is to announce a proof of almost the
whole of this conjecture.

Theorem 1. There exist k � � and 0 � � � � such that every
non-abelian finite simple group G, which is not a Suzuki group, has
a set S of k generators for which Cay(G; S) is an �-expander.

In fact careful estimates using variations of some of the argu-
ments below yield k � 1,000 and � � 10�10.

We believe that the above theorem holds also for the Suzuki
groups, but our (diverse) methods do not apply to them. What
makes them exceptional is the fact that they do not contain
copies of SL2(�p) or PSL2(�p) like all the other finite simple
groups (see below for more details).

The proof of Theorem 1 is the accumulation of the works (refs.
7–10 and A.L., unpublished results) in the following chronolog-
ical order.

In ref. 7 it was proved, extending the work of Shalom (3), that
for m � 3 and k � 0 the group SLm(�[x1, . . . , xk]) has property
(�), i.e., its finite quotients are expanders. It was then further
shown in ref. 8 that if R � ��x1, . . . , xk� is a free noncommu-
tative ring, then suitable finite quotients of ELm(R) are also
expanders uniformly, provided m � 3 [where ELm(R) denotes
the subgroup of the multiplicative group of Matm(R) generated

by the elementary matrices]. This includes, in particular, the
groups EL3(Matn(�q)) � SL3n(�q), and thus SL3n(�q) are
uniformly expanders for all n and for all prime powers q. For
every d � 3, the group SLd(�q) is a bounded product of copies
of SL3n(�q) for n �  d�3 , which implies (using Lemma 1 below)
that the groups {SLd(�q) � d � 3, q prime power} form a family
of expanders.

It was then shown in ref. 10 that every finite simple classical
group of Lie type is a bounded product of copies of SLd(�q) and
its central quotients. This fact can be combined with the previous
results to yield that all classical groups of Lie type of sufficiently
high rank are expanders uniformly.

The alternating groups Alt(n) [or equivalently the symmetric
groups Sym(n)] for n � 5 are also expanders in a uniform way.
This result is proved in ref. 9. The argument here is more
involved because Alt(n) contains copies of SLd(�q), but it is not
boundedly generated by such groups. The proof instead goes by
decomposing the regular representation of Alt(n) into two
components. On the first component Alt(n) acts as if it is
boundedly generated by some copies of powers of SLd(�q). On
the second component one applies the eigenvalue estimates of
ref. 11. The idea of this decomposition comes from work of
Roichman (12).

On the other hand, it is shown by A.L. (unpublished results)
that the family SL2(�q), q a prime power, is also a family of
expanders. This result is proved by a combination of Selberg’s
Theorem (cf. ref. 1 and Section 4) with the explicit construction
of Ramanujan graphs as given in ref. 13. In fact, a similar method
(using the theory of Ramanujan complexes cf. ref. 14 and their
explicit construction in ref. 13) also gives that the groups SLd(�q)
for all d � 2 and all prime powers q are expanders uniformly.

The case of SL2(�q) is the crucial new case of A.L. (unpub-
lished results). It is further shown there, using some model
theoretic results of Hrushovski and Pillay (15), that for a fixed
r, all finite simple groups of Lie type and of rank at most r, with
the exception of the Suzuki groups, are bounded products of
copies of SL2(�q)’s. One therefore deduces that the groups of Lie
type and rank � r are expanders uniformly. This case exactly
complements the results of refs. 8 and 10 and all together gives
that all finite simple groups of Lie type, with the possible
exception of the Suzuki groups, are expanders uniformly.

By the classification of the finite simple groups (CFSG), every
(non-abelian) finite simple group is either alternating or of Lie
type or one of finitely many sporadic groups. Thus, Theorem 1
follows from the works described above.

The layout of the current note does not reflect the chrono-
logical story. We recall and make in Section 1 some observations
regarding the representation theoretic reformulation of the
problem. In Section 2 we describe the proof for SL2, while
Sections 3 and 4 give two proofs for the case of SLd, (d � 3): first,
via Ramanujan complexes and second, via EL3(��x1, . . . , xk�).
In Section 5 we use the results for SLd(�q) to construct expanding
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generating sets in all simple groups of Lie type (with the
exception of the Suzuki groups). In Section 6 we describe the
proof for Alt(n), which is a case of great special interest.

1. A Representation Theoretic Interpretation
As is well known (cf. ref. 1, Chap. 4), the expanding property of
Cay(G; S) is equivalent to representation theoretic properties.
We need some notation.

The normalized adjacency matrix of a k-regular graph X is
defined to be � � 1�k�A where A is the adjacency matrix of X.
Then all the eigenvalues of � are in [�1, 1]. The second largest
eigenvalue is denoted �(X).

Let I(�, G, S) denote the following statement:
For every unitary representation (V, �) of G, every 0 � v � V

and every 0 � 	 � �, if ��(s)v � v� � 	 for each s � S, then
��(g)v � v� � �	 for each g � G (i.e., a vector v which is ‘‘S-almost
invariant’’ is also ‘‘G-almost invariant’’).

Proposition 1 below can be deduced from the proofs of
propositions 4.2.4 and 4.2.5 and theorem 4.3.2 of ref. 1, noting
that the ‘‘nonnormalized spectral gap’’ �1(X) there is equal to
k(1 � �(X)) under our definition.

Proposition 1. The following hold:

(i) (a) For each � � 0 there is � � 0 such that a Cayley graph X �
Cay(G; S) is an �-expander if I(�, G, S) holds.

(b) For each 	 � 0 there is � � 0 such that if X � Cay(G, S)
is a Cayley graph and �(X) � 1 � 	 then I(�, G; S) holds.

(ii) Moreover, if k � �S� is bounded then the implications in (i) can
be reversed.

We shall repeatedly use the following easy lemma.

Lemma 1 (9). Let G be a finite group generated by a collection of
subgroups {Hi} and let �1, 	 � 0. Assume that each subgroup Hi
is generated by a subset Si such that ��i Si� � k and that each graph
Cay(Hi; Si) is an �1-expander. Moreover, assume that the graph
Y � Cay(G; �iHi) satisfies �(Y) � 1 � 	.

Then there exists � � 0 depending on �1, 	 and k such that the
Cayley graph Cay(G; �iSi) is an �-expander.

For the proof take any unitary representation (V, �) of G with
a �iSi-almost invariant vector v. Restricting the representation
to each Hi we see that v is Hi-almost invariant. The last
assumption of Lemma 1 implies that v is then G-almost invariant
and by Proposition 1, Cay(G; �iSi) is an expander.

This lemma implies for example that if G is a bounded product
of a bounded number of subgroups H1, H2, . . . , H� and each Hi
is an �0-expander (w.r.t. some set of generators Si), then G is an
�-expander w.r.t. their union S � �Si.

2. The SL2(�pk) Case
In this section we will show, following A.L. (unpublished results),
that PSL2(q) can be made into expanders uniformly for every
prime power q � p�. It is known that:

Fact 1: The family of groups SL2(�p), p prime, w.r.t. the
generators

A 
 �1 1
0 1� and B 
 � 0 1

�1 0�
form a family of expanders. For a proof, based on Selberg’s
theorem �1 � 3�16, see ref. 1, Section 4.

Fact 2: For a fixed prime p, the groups SL2(�pk), k � �, have
a subset Sp of p 	 1 generators for which the Cayley graphs X �
Cay(SL2(pk); Sp) are Ramanujan graphs, i.e., �(X) � (2
p�
p	1). This fact means, in particular, that they are �-expanders
with a common expanding factor � � 0, even if we let both p and
k vary. The problem is that the number of generators is
unbounded when p 3 �.

The result of Fact 2 was first proved by Morgenstern (16), and
it relies on Drinfeld’s solution to the characteristic p Ramanujan
conjecture for GL2. However, for our purpose we need the
explicit construction of Ramanujan graphs (as special cases of
Ramanujan complexes) as given in ref. 13. In the construction
there, a symmetric set of p 	 1 generators S�p for SL2(�pk) is given
as the p 	 1 conjugates of a fixed element C by a fixed nonsplit
torus H of SL2(�p), i.e., S�p � {h�1C1h � h � H}. Now

��Cay�SL2��pk� ; S�p�� �
2 �p

p � 1
�

19
20

,

therefore these graphs are �-expanders by Proposition 1, for
some � � 0 independent of k and p. However, the generating sets
S�p are not bounded.

At the same time Cay(SL2(p); {A, B}) are expanders uni-
formly by Fact 1. All together, these facts imply that
Cay(SL2(�pk); {A, B, C}) are expanders by Lemma 1: Indeed, if
(V, �) is a representation of G � SL2(�pk) and v � V is S-almost
invariant for the set S � {A, B, C}, then v is SL2(�p)-almost
invariant and hence is also S�p-almost invariant, because
S�p � SL2(�p)�C�SL2(�p), and hence v is G-almost invariant.

This argument shows that SL2(�pk) are uniformly expanders
with three generators.

3. SLd (�pk) via Ramanujan Complexes
One can generalize the proof for SL2 described in Section 2 to
SLd for every d. We sketch the proof below (details available
from A.L. upon request).

Let F � �q be the field of order q � pk, for some prime p. Let
E � �qd be the unique field extension of degree d. The natural
map E* 3 GLd(�q) given by letting E* act on E by multiplica-
tion, induces an isomorphism of

�x � E*�NormE/F�x� 
 1� onto H � SLd��q� ,

where H is a nonsplit maximal torus of order (qd � 1)�(q � 1).
In ref. 13 it was shown that there exists an � � 0 such that for
a suitable choice of D � SLd(�q), the Cayley graphs
Cay(SLd(�q); S�) are �-expanders when S� � {h�1Dh � h � H}.
What is really proved there is that the adjacency operator of this
Cayley graph is the sum of the first and the last of the d � 1
Hecke operators on the Cayley complex SLd(�q), which is a
Ramanujan complex, see ref. 14. The eigenvalue bound on these
Hecke operators implies that

��Cay�SLd��q� ; S��� �
2dq �d�1�/2

�qd  1���q  1�
,

and in particular these are �-expanders by Proposition 1.
We mention that the proof here (when d � 3) does not need

the full power of the Ramanujan bound. A weaker bound

��Cay�SLd��q� ; S��� �
1
�q

� o�1� �
19
20

,

which is sufficient for our purposes, can be deduced from the
infinite dimensional representation theory of the group
SLd(�q((t))).

Assume now that d is even, d � 2m. Then the map
E* GLd(�q) described above factors through

E* 
 �*q2m GL2�qm� GL2m�q� 
 GLd�q� ,

which shows that H � SLd(�q) is contained in a copy of SL2(�qm).
Take now the expanding generating set {A, B, C} of SL2(�qm)

from Section 2 with D to obtain a generating set S of four
elements for SLd(�q).
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We claim that SLd(�q) are a family of expanders w.r.t. these
four generators. By Lemma 1 again, an S � {A, B, C, D}-almost
invariant vector is SL2(�qm)-almost invariant, and then it is
H�D�H-almost invariant hence also S�-almost invariant and thus
G � SLd(�q)-almost invariant as required.

This argument covers the case of even d. For odd d, the group
SLd(�q) is a product of four copies of SLd�1(�q), and we can
apply Lemma 1.

4. SLd(�pk) for (d > 3) via EL3(R)
A different proof for the case of SLd has been given in ref. 8
[prior to the proof of A.L. (unpublished results), which is
described in Section 3]. This proof builds on the work of Shalom
(3), where he gave a new proof of Kazhdan’s result (17) that
SL3(�) has property (T). Shalom’s proof has two ingredients.

Part 1: The group � � SL2(�) �� �2 has a relative Kazhdan
property (T) relative to �2, i.e., if (V, �) is a unitary represen-
tation space of � with an almost invariant vector w.r.t. the set of
four natural generators, then this vector is �2-almost invariant.

Part 2: The group � is isomorphic to a maximal parabolic
subgroup of SL3(�). Conjugating with the Weyl group gives rise
to six obvious embeddings of � in SL3(�). The images of �2 in
these embeddings (which include all root subgroups) boundedly
generate SL3(�) by a result of Carter and Keller (18).

Parts 1 and 2 together imply that if V is a unitary represen-
tation of � � SL3(�) and v � V is an almost invariant vector
(w.r.t. some generating set) it will be �-almost invariant, and
therefore the group � has property (T).

A similar argument to Part 1 works also for � � SL2(R0) �� R0
2,

when R0 is the polynomial ring in k variables over �. However, it is
not known if the bounded generation of Part 2 holds in this case,
which would imply that SL3(R0) has property (T). Still, by analyzing
the congruence kernel of SL3(R0), it is deduced in ref. 7 that � �
SL3(R0) has property (�), i.e., all of its finite factors are expanders
(w.r.t. a fixed set of generators of �).

A step further is taken in ref. 8: it is shown there that Part 1
holds even if one takes the noncommutative free ring R �
��x1, . . . , xk�, i.e., � � EL2(R) �� R2 has property (T) relative
to R2.

It will be quite surprising if the analogue of the Carter and
Keller result holds for � � EL3(R), i.e., if � is boundedly
generated by its root subgroups. However, this fact holds for
many quotients R� of R: If R� � Matn(�q) or R� � Matn(�q)s for
s � qn2

, then R� is an image of ��x1, x2, x3� and EL3(R� ) is
boundedly generated by its elementary matrices in a way that is
independent of n, q, and s. This result implies that the groups
EL3(Matn(�q)) � SL3n(�q) and EL3(Matn(�q)s) � SL3n(�q)s are
a family of expanders.

For a general d � 3, one notes again that SLd(�q) is a bounded
product of a bounded number of copies of SL3n(�q) for n �
 d�3 . We can therefore deduce by Lemma 1 that SLd(�q) form
a family of expanders for all d � 3 and every prime power q.

One of the advantages of this construction is that it also
produces expanders in very large powers of the group SLd(�q),
which are essential for constructing expanding generating sets in
the alternating groups (see Section 6).

5. Simple Groups of Lie Type
The following two theorems show how to reduce the case of
finite simple groups of Lie type (minus the Suzuki groups) to the
case of SLd(�q) described in Sections 2–4.

Theorem 2 (10). There exists a constant C such that every finite
simple group G of classical type is a product of at most C subgroups
of G which are quotients of SLd(�q) (for some d � 2 and q).

Theorem 3 (A.L., unpublished results). Given r � �, there exists a
constant C(r) with the following property: Suppose G is a finite

simple group of Lie type of Lie rank at most r, which is not a Suzuki
group. Then G is a product of at most C(r) subgroups each of which
is a quotient of SL2(�q) for a suitably chosen field �q.

As explained in Lemma 1, once a group G is a product of
boundedly many groups that are �-expanders, its Cayley graph is
an ��-expander. So Theorem 1 is now proved for all groups of Lie
type except for the Suzuki groups. The reason for the Suzuki
groups to be excluded is the fact that they do not contain copies
of SLd(�q) or PSLd(�q) for any d � 2 and prime power q. In fact,
the order of a Suzuki group is not divisible by 3, whereas
�SLd(�q)� is.

The proof of Theorem 2 is based on the fact that an arbitrary
connected Dynkin diagram of high rank becomes one of type Ad
after a vertex is deleted. In this way we can find a quasisimple
quotient G1 of SLd	1(�q) inside G (in fact it is a Levi factor of
a suitable parabolic subgroup).

If U (resp. U1) is a maximal unipotent subgroup of G (resp G1)
then ref. 10 proves that U is a product of at most 14 conjugates
of U1 (using that the positive root system of G parameterizing U
is ‘‘close’’ to the root system Ad of U1). A theorem of Liebeck and
Pyber in ref. 19 now gives that G is a product of at most 13
conjugates of U and hence a product of at most 13 � 14 � 182
conjugates of G1.

A very detailed and laborious analysis of this kind will also
lead to a similar proof of Theorem 3 with explicit bounds for C(r),
but this is not the way this theorem is proved by A.L. (unpub-
lished results).

Instead, the author there appeals to a model theoretic method
developed by Hrushovski and Pillay (15). There, it is shown that
‘‘definable’’ subgroups of GLn(F) over pseudo-algebraically
closed field F are very much like Zariski closed subgroups over
algebraically closed field. In particular, if a definable subgroup
H is generated by finitely many definable subgroups L1, . . . , Lc,
then it is a bounded product of them. Now, it follows from the
Lang–Weil Theorem that ultraproducts of finite fields are
pseudo-algebraically closed (see ref. 20). As elementary state-
ments are true in an ultraproduct if they are true in almost all
factors, one can get ‘‘bounded results’’ over finite fields. This
scheme is applied to show that all the finite simple groups
(except the Suzuki groups) contain ‘‘definable’’ subgroups iso-
morphic to SL2(�q) or PSL2(�q) and hence are generated by
them in a bounded way (when the rank is bounded).

6. The Alternating Groups
Last but not least is the case of the alternating groups Alt(n). For
its special importance, we restate it as follows.

Theorem 4 (9). There exist l � � and 0 � � � � such that for every
n � � the alternating group Alt(n) has an explicit set of generators
Sn of size at most l such that Cay(Alt(n); Sn) is an �-expander. The
same holds also for the symmetric groups Sym(n).

The main idea of the proof in ref. 9 is as follows. Assume first
that n � d6 and d � 23k � 1 for some k. Based on ideas and
results from ref. 8 (see Section 4) it is shown first that the Cayley
graphs of the groups �k � SL3k(�2)d5

w.r.t. some generating set
Fk of size at most 20 are �0-expanders for all k and d � 23k � 1
(for some fixed �0 � 0).

Now, thinking of the set {1, . . . , n} as the points in a
six-dimensional cube of size d, and remembering that SL3k(�2)
acts transitively on a set of size d (via its defining linear action
on �2

3k), we can construct six different embeddings �i of �k into
Alt(n), where the image under �i of each copy of SL3k(�2) in �k
acts on the points on a line parallel to the ith coordinate axis in
the cube. Denote Sn � �i�i(Fk) and E � �i�i(�k). We will show
that the Cayley graphs of Alt(n) with respect to Sn form a family
of expanders. Using that Fk is an expanding generating set in �k
by Lemma 1 it suffices to show that the existence of an E-almost
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invariant vector v in any unitary representation V of Alt(n)
implies the existence of an Alt(n)-almost invariant vector.

We decompose V as a sum of two representations V1 Q V2,
where V1 is the sum of all irreducible representations of Alt(n)
in V corresponding to partitions � � n, where the first row �1 is
not too big (less than n � d5/4) and V2 contains all others. A
similar decomposition is used by Roichman in ref. 12 to show
that the Cayley graphs of Alt(n) with respect to conjugacy classes
have some expanding properties. We will use two different
arguments to show that the projection v1 of v in V1 is small and
that projection v2 in V2 is close to an invariant vector.

Argument 1: Using the definition of the set E, it is shown that
a bounded power of E acts transitively on ‘‘nearly all’’ ordered
�-tuples of points in the cube for some � of size approximately
d5�(3 log d). Also a bounded power of E contains a permutation
that acts as �-cycle. Thus, the vector v, and therefore v1, is almost
invariant by nearly all elements in the conjugacy class C� of
�-cycles in Alt(n). Here nearly all means a subset of proportion
tending to 1, as k and n tend to infinity. This fact implies that v1
is almost invariant under the action of the operator

L 

1

�C�� �
s�C�

s.

The operator L acts as a multiplication by ��(C�)���(id) on the
irreducible representation V� corresponding to the partition �,
where �� is the character of V�. At this point one can appeal to

the results of Roichman (11), who studied normalized character
values of the symmetric groups. Roichman’s results give that
���(C�)���(id)� �� 1, for any � � n, provided that the first row
�1 is small. Therefore, �Lv1� �� �v1�, which together with the
almost invariance of v1 under L, implies that the vector v1 is
short.

Argument 2: Using that all irreducible representations in V2
corresponds to partitions with �1 � n � d5/4, one can view the
linear span W of the orbit of v2 in V2 as part of the induced
representation to Alt(n) of the trivial representation of Alt(n �
d5/4). This induced representation has a basis �, whose elements
corresponds to the ordered d5/4-tuples of points in the cube. The
size of the basis � is significantly smaller that the size of E, and
it can be shown that the random walk on � defined by E mixes
in just several steps. This fact, together with the almost invari-
ance of v2 under E, implies that v2 is close to an invariant vector.

This argument finishes the sketch of the proof for the case
Alt(n) for n � (23k � 1)6 for some k. The case of general n
follows from the observation that Alt(n) can be written as a
product of a bounded number of copies of Alt(nk) for nk �
(23k � 1)6 embedded in Alt(n). By adding any odd permutation
to Sn, we see that the symmetric groups Sym(n) also form a
family of expanders.
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