
MAT667 Expander Graphs: Lecture 1

These notes have been designed to introduce the uninitiated reader to the basic
theory of graphs. Much of it follows the first chapter of Elementary Number Theory,
Group Theory, and Ramanujan Graphs by Davidoff, Sarnak and Valette, which the
author found to be a very clear recounting of basic graph theory definitions and
which also contains a number of excellent problems at the end of each section. We
also use the main text for this course, Expander Graphs and their Applications by
Hoory, Linial and Wigderson.

Basic Definitions

We begin by setting up notation. Define a graph X to be the pair of sets (V,E),
where V is a collection of vertices and E a collection of edges. If both |V | and |E|
are finite, we shall say X is finite. Note that loops (edges connecting a vertex to
itself) are allowed, as are multiple edges connecting the same pair of vertices. We
say that a graph is oriented or directed if we choose to denote an originating vertex
and a terminating vertex for each edge. In such a case, given edge e we shall let
e− and e+ represent the corresponding origin and terminal vertices. Unless stated
otherwise, assume that any graph is undirected. If two vertices are connected by
an edge, we shall say they are adjacent or neighbouring.

For any arbitrary graph X, let

l2(V ) := {f : V → C |
∑
v∈V
|f(v)|2 <∞}

and l2(E) := {f : E → C |
∑
e∈E
|f(v)|2 <∞}

Obviously in the case where |V | = n is finite, l2(V ) reduces to Cn as every such
function can be thought of as an n× 1 vector and likewise the same holds for l2(E)
when E is a finite set.

Definition 1. Let X = (V,E) and X ′ = (V ′, E′) be two graphs. We say that X
and X ′ are isomorphic if there exists a bijection f : V → V ′ such that for all pairs
of vertices u, v ∈ V , the number of edges connecting u and v equals the the number
of edges connecting f(u) and f(v). In such a case f is called an edge-preserving
isomorphism.

We can of course extend the definition of isomorphism to directed graphs as
well, by placing a natural restriction on the orientation of edges connecting f(u)
and f(v). We shall not however have reason to use this.

Definition 2. Let X be an n-graph (ie. a graph with n = |V | vertices) and let
v1, . . . , vn denote some arbitrary fixed ordering of the vertices. The adjacency
matrix of X, denoted A = A(X) is the n × n matrix (aij) where aij equals the
number of edges connecting vi and vj.

The adjacency matrix will be our main focus of study in this first lecture. It is
clear from the definitions that two undirected graphs are isomorphic iff they have
the same adjacency matrix, possibly after reordering vertices. Hence it is natural to
say that the adjacency matrix completely determines the graph and vice-versa and
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thus one would hope that we could recover interesting graph theoretic properties
by studying the algebraic properties of A. This is precisely what we shall do for
the remainder of the lecture.

Perhaps the most obvious feature of A(X) is that it is always real and symmetric
(and of course every entry is positive). It follows from the Spectral Theorem of linear
algebra that there exists an orthonormal basis of Rn consisting of eigenvalues of A.
This particular property will play a pivotal role in what is to follow and we shall
return to it after a few more definitions.

Definition 3. Let v be some vertex of a graph X. Define the degree of v ( deg(v) )
to be the number of edges incident to v. We say that a graph X is k-regular if the
degree of every vertex is k.

Remark In the definition of degree, there is the issue concerning whether to count
a loop twice. Following what appears to be the convention in HLW, we have decided
not to do this.

Notice that these two concepts are completely encoded in the rows of the adja-
cency matrix for any finite graph. Indeed if v = vi, then deg(v) =

∑
j aij and so a

finite graph is k-regular iff this sum is k for all appropriate i.

Definition 4. We say that a graph X is simple if there are no multiple edges.

Again if X is finite, the simplicity of X is encoded by the fact that aij ∈ {0, 1}.

Definition 5. A path is a sequence of vertices in a graph X such that for each
consecutive pair (vi, vi+1), there is an edge connecting the two. If there exists a
finite path whose initial vertex is v and whose final vertex is v′, we say that v and
v′ are connected. A graph is connected if every pair of vertices are.

It is intuitively clear that being “connected” forms an equivalence relation (note
that the sequence (v) is a path connecting v with itself) and that this partitions
vertices into disjoint “connected components”. A graph is thus connected iff every
vertex belongs to the same component.

We shall now focus our attention on graphs that are both finite and regular.
Henceforth unless otherwise noted, we shall assume X denotes a finite, d-regular
graph with n vertices. In such a case, we shall see that the property of connectedness
is also easily recoverable from the adjacency matrix A of X.

As noted earlier, A diagonalizes over the reals, so let λ0 ≥ λ1 ≥ . . . λn−1 denote
the n real eigenvalues of A. We shall call these eigenvalues the spectrum of X.
Because the entries of A are so closely connected with pairings of the n vertices
of X, it is often convenient in what follows to index these entries with respect to
vertices instead of i, j. Hence we write

A = (aij) = (axy)x,y∈V .

Consider A as a linear transformation on the space l2(V ), and one gets the
following:
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Af =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
an1 an2 . . . ann




f(v1)
f(v2)

...
f(vn)



=


a11f(v1) + a12f(v2) + . . .+ a1nf(n)
a21f(v1) + a22f(v2) + . . .+ a2nf(n)

...
an1f(v1) + an2f(v2) + . . .+ annf(n)

 .

Thus indexing by vertices we have the formula Af(v) =
∑
x∈V avxf(x).

Proposition 6. Let X be as above. Then
(a) λ0 = d;
(b) |λi| ≤ d for 1 ≤ i ≤ n− 1;
(c) λ0 has multiplicity 1 iff X is connected.

Proof. By the remarks following the definition of regularity, we see that the constant
function (1, 1, . . . , 1) is an eigenfunction of A with eigenvalue d. We next show
that any other eigenvalue has norm less then d. Indeed let f be some arbitrary
eigenfunction on V with eigenvalue λ and suppose x ∈ V is such that |f(x)| ≥ |f(y)|
for all y ∈ V (recall of course that V is finite). Then we have

|λ||f(x)| = |Af(x)|
= |

∑
y∈V

axyf(y)|

≤
∑
y∈V
|axy||f(x)|

≤ |f(x)|
∑
y∈V

axy because the matrix entries are positive

= d · |f(x)| which completes the proof of both (a) and (b)

For (c), assume first X is connected and suppose f is an eigenfunction with
eigenvalue λ0 = d. Again let x be the vertex where f achieves its maximum
absolute value, and WLOG we may assume f is real-valued with f(x) > 0 (due to
the spectral theorem). Then we have f(x) =

∑
y∈V

axy

d f(y). Note that
∑
y∈V

axy

d is
a convex sum of positive numbers and since f(x) ≥ f(y), it follows that f(y) = f(x)
whenever axy 6= 0 or equivalently f(y) = f(x) if y is adjacent to x. It is clear that
we can repeat this argument by replacing x with any adjacent vertex to conclude
that f is constant on any vertex which is within two edges of x. Inductively, we
get that f must be constant on any vertex that is connected to x and since X is
connected we conclude f must be constant and hence λ0 has multiplicity 1.

Now assume X is not connected. Let V1 be a connected component of V and
let E1 denote all the edges connecting vertices of V1. It is clear that we can then
partition X into two disjoint subgraphs X1 = (V1, E1) and X2 = (V \V1, E\E1).
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Furthermore, if we ensure that the vertices of each graph are labelled in the appro-
priate manner, the adjacency matrix of X will look like

A(X) =
(
A(X1) 0

0 A(X2)

)
.

Basic linear algebra tells us that the eigenvalues of A(X) must then be the same
as those for either of the two submatrices and the multiplicity for any value will be
the sum of the multiplicities of that value for A(X1) and A(X2). By (a), d is the
largest eigenvalue for both A(X1) and A(X2) which completes the proof. �

Before moving on to the concept of expander graphs, we introduce one more
basic graph theoretic notion that is again encapsulated by the study of eigenvalues
on the adjacency matrix.

Definition 7. An arbitrary graph X (need not be finite or connected or regular) is
bipartite if there exists a partition of vertices V = V1 ∪ V2 such that for any two
vertices x, y ∈ V , if axy 6= 0 then either x ∈ V1 and y ∈ V2 or vice-versa.

From a conceptual point of view, being bipartite amounts to being able to colour
the vertices of a graph using two colours in such a manner as to ensure no two
adjacent vertices have the same colour. The following proposition shows that begin
bipartite is reflected in the symmetry of the spectrum of a graph.

Proposition 8. Let X be as usual. The following are equivalent:
(i) X is bipartite;
(ii) The spectrum of X is symmetric about 0;
(iii) λn−1 = −d.

Proof. We show (i)⇒ (ii)⇒ (iii)⇒ (i).
(i)⇒ (ii): Writing V = V1 ∪ V2 as in the definition of bipartite, suppose f is an

eigenfunction of A with eigenvalue λ. Define the function g on V as the following:

g(x) :=
{
f(x) if x ∈ V1

−f(x) if x ∈ V2.
Then

Ag(x) =
∑
y∈V

axyg(y)

=
∑
y∈V1

axyf(y)−
∑
y∈V2

axyf(y).

Since X is bipartite, every term in one of the two sums above will vanish, depending
upon whether x is in V1 or V2. If say x is in V1 then the first sum vanishes and
hence Ag(x) = −

∑
y∈V2

axyf(y) = −
∑
y∈V axyf(y) = −λf(x). The case when x

is in V2 is similar.
(ii)⇒ (iii): This follows immediately from part (a) of the previous proposition.
(iii) ⇒ (i): Let f be a real function that corresponds to eigenvalue −d. Let x

be a vertex where the maximum absolute value of f is attained. We will show that
f attains only two values, namely f(x) and −f(x), and partitioning the vertices to
correspond with their values under f will realize X as bipartite. The proof will be
similar to part (c) of the previous proposition. Note first that we have
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−d · (f(x)) = Af(x) =
∑
y∈V

axyf(y)

and since the axy are all positive and sum to d, it follows by the maximality in
modulus of f(x) that f(y) = −f(x) whenever axy 6= 0. Hence f(y) = −f(x) for
all y adjacent to x. But now as before we can repeat the argument with any such
y replacing x. Since the graph is connected, it follows that this argument will
inductively show that the image of f lies in {±f(x)} and that y is adjacent to z
only if f(y) 6= f(z) for any two arbitrary vertices y, z ∈ V . This completes the
proof. �

Expander Graphs and Inequalities

We now delve a little deeper into graph theory and introduce more sophisticated
machinery that will be the main focus of the course. As before, we will always
assume the X is a connected, undirected, d-regular n-graph unless noted otherwise.
For S, T ⊆ V let the set E(S, T ) denote the subset of edges connecting S with T .
More explicitly, we have

E(S, T ) = {(u, v) | u ∈ S, v ∈ T, (u, v) ∈ E}.
If we consider the set of undirected edges of E as pairs of directed edges, then
E(S, T ) can be thought of as a set of directed edges. We also denote E(S) = ES
as the collection of edges that connect vertices both lying in S.

Definition 9. The edge boundary of a subset of vertices S, denoted ∂S, is
E(S, S). We define the edge expansion ratio (or isoperimetric constant or
expanding constant) of a graph X, denoted h(X), as:

h(X) = min
{S||S|≤n

2 }

|∂S|
|S|

.

As noted in the introductory lecture, we could equally well define a vertex
boundary, which counts the number of vertices adjacent to some subset and also
apply a type of expanding constant to this value. We shall not however have reason
to do this in the current lecture.

Definition 10. Let (Xm) be a sequence of d-regular graphs with size (in terms of
number of vertices) increasing with m. We say that this is a sequence of expander
graphs if there exists some constant ε > 0 such that h(Xm) ≥ ε for all m.

Examples of Expander Graphs
(1) A family of 8-regular graphs Xm for m ∈ Z>0. Denote the vertex set Vm =

Z/mZ × Z/mZ. For vertex (x, y) the neighbours are {(x + y, y), (x − y, y), (x, y +
x), (x, y−x), (x+y+1, y), (x−y+1, y), (x, y+x+1), (x, y−x+1)} (where addition
is modulo m).

This was the first explicitly constructed family of expander graphs and is due to
Margulis using representation theory. Gabber and Galil later provided a bound on
the expansion ratio using harmonic analysis. A proof of expansion can be found in
section 8 of HLW.
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(2) A family of p-regular p-graphs for every prime p. Here Vp = Zp and the
neighbours of a point x are {x + 1, x − 1, x−1} where all operations are mod p
and the inverse of 0 is defined as 0. Proof of expansion relies on the Selberg 3/16
theorem and is discussed in section 11 of HLW.

We now prepare ourselves to prove two basic inequalities of expander graph
theory. Before we can proceed to do so however, we are going to develop a little
more machinery that exploits the l2 spaces introduced earlier. Let X be as usual,
and endow X with an arbitrary orientation. We define the simplical coboundary
operator δ : l2(V )→ l2(E) as:

(δf)(e) = f(e+)− f(e−).

As a matrix, δ can be thought of as the incidence matrix of X with the endowed
orientation. More explicitly, [δ] is an |E| × |V | matrix whose coordinates δe,v are
equal to:

δe,v =

 1 if v is the head of e
−1 if v is the tail of e
0 if e is a loop at v or otherwise.

Notice that l2(V ) has a natural scalar product, < f, g >=
∑
v∈V f(v)g(v) and

likewise for l(E). Hence δ is a linear operator between two finite dimensional C
vector spaces and thus it has an adjoint δ∗ : l2(E)→ l2(V ) whose action is defined
by < δf, g >=< f, δ∗g > for f ∈ l2(V ), g ∈ l2(E). As a matrix, obviously [δ∗] is
just the conjugate of [δ] (note of course that [δ] is real). To explicitly compute the
value of δ∗g at vertex v, take f ∈ l2(V ) to be the function that is 1 at v and 0 else.
Then

δ∗g(v) = < f, δ∗g >

= < δf, g >

=
∑
e∈E1

g(e)−
∑
e∈E2

g(e)

where E1 and E2 are the sets of edges ending or originating from v respectively.

Obviously δ and its conjugate depend explicitly on the orientation chosen for
the graph X. However, the remarkable fact is that their composition δ∗δ : l2(V )→
l2(E) does not. Indeed we have

(δ∗δf)(v) =
∑
e∈E1

δf(e)−
∑
e∈E2

δf(e)

=
∑
e∈E1

(f(v)− f(e−))−
∑
e∈E2

(f(e+)− f(v))

= d · f(v)−
∑

(v,u)∈E

f(u)

= d · f(v)−Af(v).

Hence the operator δ∗δ depends only on the adjacency matrix of X and can be
written succinctly as δ∗δ = d · Id − A. This operator is known as the (minus)
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combinatorial laplacian for X and the operator δ can be thought of as the gradient
for X endowed with the given orientation. Notice that the eigenvalues of δ∗δ are
0 ≤ d− λ1 ≤ d− λ2 ≤ . . . ≤ d− λn−1. It follows that if f ∈ l2(V ) is orthogonal to
the constant functions, then ||δf ||2 = | < δ∗δf, f > | ≥ (d− λ1) · ||f ||2. The value
(d− λ1) is going to be very important in studying certain expansion properties of
a graph X and is called the spectral gap of X.

Theorem 11. (Alon-Milman Inequalities) Let X be a connected, undirected, d-
regular n-graph with spectrum d = λ0 ≥ λ1 ≥ . . . ≥ λn−1. Then

d− λ1

2
≤ h(X) ≤

√
2d(d− λ1).

Proof. We will follow Alon and Milman’s paper λ1, Isoperimetric Inequalities for
Graphs, and Superconcentrators for the first inequality, the so called “easy half”.
In fact we will prove a more general inequality. Let A and B be two disjoint subsets
of V and let ρ be the distance between them (distance is defined as the minimum
number of edges needed to construct a path between 2 vertices in A and B). Let EA
and EB be the set of edges whose vertices are both in A or both in B respectively.
We claim that it suffices to show the following inequality:

(1) d− λ1 ≤
1
ρ2

(
1
|A|

+
1
|B|

)
(|E| − |EA| − |EB |).

Indeed, suppose the above held. Then take A to be any subset of vertices such
that |A| ≤ |V |/2 and take B = V \A. Then |E| − |EA| − |EB | = ∂A, ρ = 1 and
( 1
|A|+

1
|B| ) ≤

2
|A| . Rearranging would then give the desired result. Hence we proceed

to prove (1).
Define g ∈ l2(V ) by

g(v) =
n

|A|
− 1
ρ

(
n

|A|
+

n

|B|

)
min(ρ(v,A), ρ).

where ρ(v,A) is the distance as defined above between {v} and A. Note that if
v ∈ A then the distance is 0, so g(v) = n

|A| and if v ∈ B, g(v) reduces to − n
|B| . If

u, v are neighbours, ρ(u,A) and ρ(v,A) cannot differ by more then one, and hence
|g(u)−g(v)| ≤ n/ρ(1/|A|+1/|B|). It follows immediately from the definitions that

|δg(e)| ≤ n/ρ(1/|A|+ 1/|B|) for all e ∈ E.
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Now define the constant α = 1/n
∑
v∈V g(v) and let f = g−α. Then f is orthogonal

to the constant functions since
∑
v f(v) = 0. Hence by the earlier remark we have

(d− λ1)
(
n2

|A|
+
n2

|B|

)
≤ (d− λ1)

((
n

|A|
− α

)2

· |A|+
(
n

|B|
+ α

)2

· |B|

)
= (d− λ1)

∑
v∈A∪B

f(v)2

≤ (d− λ1)||f ||2

≤ ||δf ||2

=
∑
e∈E

(f(e+)− f(e−))2 for some arbitrary orientation of X

=
∑
e∈E

(g(e+)− g(e−))2

=
∑

e∈E\(EA∪EB)

(g(e+)− g(e−))2

≤ 1
ρ2

(
n

|A|
+

n

|B|

)2

(|E| − |EA| − |EB |).

Dividing both sides by
(
n2

A + n2

B

)
yields the desired result and proves the first half

of the Alon-Milmon inequalities.

The second inequality, h(X) ≤
√

2d(d− λ1) is somewhat more involved. The
proof follows that found in DSV starting on page 14, although some details are
omitted. We proceed by inducing some arbitrary orientation on X and then prove
3 inequalities involving the constant

Bf =
∑
e∈E
|f(e+)2 − f(e−)2|

when f is a real valued non-negative function in l2(V ) (clearly Bf does not depend
on the orientation). Denote by βr > βr−1 > . . . > β0 ≥ 0 the distinct values
attained by such an f , and define Li = {x ∈ V : f(x) ≥ βi}. Notice that ∂Li
consists of edges where f attains a value greater then βi and a value strictly less
then βi on the two defining vertices.

Step 1: Bf =
∑r
i=1 |∂Li|(β2

i − β2
i−1).

To see this equality, first reduce the formula for Bf to summing over edges
for which f(e+) 6= f(e−). Denote all such edges Ef . For any edge e ∈ Ef , let
i(e) > j(e) denote the indices in {0, . . . , r} which correspond to the two distinct
values f attains on e+ and e−. Then we have

Bf =
∑
e∈Ef

(β2
i(e) − β

2
j(e))

=
∑
e∈Ef

i(e)∑
l=j(e)+1

(β2
l(e) − β

2
l(e)−1).
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All that remains now is to count how many times the term (β2
i − β2

i−1) appears in
the final sum above for each i. But notice that such a term will appear for a given
edge e iff f attains a value ≥ βi on one vertex and a value < βi on the other, aka.
if e ∈ ∂L.

Step 2: Bf ≤
√

2d||δf || · ||f ||.
Factoring Bf and using Cauchy-Schwartz and the AM −GM inequality, we get:

Bf =
∑
e∈E
|f(e+)− f(e−)| · |f(e+) + f(e−)|

≤

(∑
e∈E

(f(e+)− f(e−))2
)1/2(∑

e∈E
(f(e+) + f(e−))2

)1/2

≤
√

2

(∑
e∈E

f(e+)2 + f(e−)2
)1/2

||δf ||

=
√

2d

(∑
v∈V

f(v)2
)1/2

||δf ||

=
√

2d||δf || · ||f ||.

Step 3: Assume |supp f | ≤ |V |2 . Then Bf ≥ h(X)||f ||2.

Note that β0 = 0 and |Li| ≤ |V |/2 for all i = 1, 2, . . . , r. Hence by definition,
|∂Li| ≥ h(X)|Li| for all such i. Using this in conjunction with step 1 we get

Bf ≥ h(X)
r∑
i=1

|Li|(β2
i − β2

i−1)

= h(X)(β2
r |Lr|+ β2

r−1(|Lr−1| − |Lr|) + . . .+ β2
1(|L1| − |L0|)).

But notice that |Li−1| − |Li| is precisely the number of vertices at which f attains
the value βi. The result follows.

We now use these results on a carefully selected function. Let g be a real-valued
eigenfunction of δ∗δ with respect to d−λ1. By multiplying by negative 1 if necessary,
we may assume that g is positive on no more then half of the vertices (Note that
g must be positive on at least one vertex because it is non-zero and orthogonal to
the constant functions). Define f as f(v) = max{g(v), 0} so that f satisfies the
support requirements of step 3. Let V + denote the support of f . Note that for
v ∈ V + we have

δ∗δf(v) = d · f(v)−
∑
u∈V

avuf(u)

= d · g(v)−
∑
u∈V +

avug(u)

≤ d · g(v)−
∑
u∈V

avug(u)

= δ∗δg(v) = (d− λ1)g(v).
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It follows that we can put a bound on the norm of δf since we have

||δf ||2 = < δ∗δf, f >=
∑
v∈V +

(δ∗δf(v))g(v)

≤ (d− λ1)
∑
v∈V +

g(v)2 = (d− λ1)||f ||2.

Combining this with the results from step 2 and 3 we get

h(X)||f ||2 ≤ Bf ≤
√

2d||f || · ||δf || ≤
√

2d(d− λ1)||f ||2.

�

Corollary 12. A sequence {Xm} of finite, connected, d-regular graphs whose num-
ber of vertices increase with m is a family of expanders iff there exists some ε > 0
such that the spectral gap for each graph is greater then ε.

Lemma 13. (Expander Mixing Lemma) Given a d-regular graph with n vertices,
let λ = λ(G) = max(|λ1|, |λn−1|). Then for all S, T ⊆ V :∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ λ√|S||T |.
We remark that the quantity on the left hand side of the inequality is known as the
deviation or discrepancy. On the one hand |E(S, T )| measures the exact number of
edges connecting S and T , while the second term measures the average number of
edges one would naively expect to connect two arbitrary sets of orders |T | and |S|
in a d regular graph with n vertices.

Proof. Let {(1/
√
n, . . . , 1/

√
n) = v0, v1, . . . , vn−1} be an orthonormal basis of real

eigenvectors wrt. the adjacency matrix, and let 1S and 1T be the characteristic
functions of the sets S and T respectively. Note that by linearity we have the
equality < 1S , A · 1T >=

∑
x∈S

∑
y∈T axy = |E(S, T )|. Writing 1S =

∑
αivi and

1T =
∑
βivi we have then

|E(S, T )| =
n−1∑
i=0

n−1∑
j=0

αiβj < vi, A · vj >

=
n−1∑
i=0

λiαiβi by orthonormality

=
d|T ||S|
n

+
n−1∑
i=1

λiαiβi
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where the last equality uses the fact that α0 =< 1S , v0 >= |S|/
√
n and likewise

for β0. Thus rearranging, we can rewrite the deviation as

∣∣∣∣|E(S, T )| − d|S||T |
n

∣∣∣∣ =

∣∣∣∣∣
n−1∑
i=1

λiαiβi

∣∣∣∣∣
≤

n−1∑
i=1

|λiαiβi|

≤ λ

n−1∑
i=0

|αiβi|

≤ λ||1S || · ||1T || by Cauchy-Schwartz.

Since the norms of 1S and 1T are easily seen to be
√
|S| and

√
|T |, this completes

the proof. �

An interesting immediate result of the expander mixing lemma is the following.
An Independent set of vertices S ⊆ V is a collection of vertices such that E(S, S)
is empty. It follows from the EML that such a set can have size at most nλ

d
vertices. We say that the graph X has a k-colouring if there exists a map ψ : V →
{1, . . . , k} such that ψ(x) 6= ψ(y) if x and y are adjacent. The chromatic number
of a graph is the smallest k for which X has a k-colouring. Since ψ−1({j}) must be
an independent set for all j and

∑
j |ψ−1({j})| = n, if X has a k-colouring, then

k ≥ d
λ . In particular, the chromatic number of X is less then or equal to d

λ .
We conclude the lecture with an example of some of the theory and language we

have developed. Consider the graph X shown below.

The adjacency matrix A for this graph comes out as
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A :=


1 1 1 0 1 0
1 1 0 2 0 0
1 0 0 1 2 0
0 2 1 0 0 1
1 0 2 0 0 1
0 0 0 1 1 2

 .

It is easy to see both visually and from the matrix that this graph is 4-regular
and is clearly not simple. Approximating the eigenvalues with Maple gives

{4, 2.097, 2, 0.117,−1.509,−2.704}
where the values 2 and 4 are exact. Hence the graph is not bipartite (which is in fact
obvious since it contains loops) but is connected. The spectral gap is approximately
1.903, and thus the Alon-Milman inequalities puts bounds on the the expanding
constant as 0.95 ≤ h(X) ≤ 2.76. In fact if we consider the subset of vertices
S = {v1, v3, v5}, we find that ∂S/|S| = 3/3 = 1 and hence this must be h(X)
by considering possible denominators. Since λ(X) ≈ 2.704, the expander mixing
lemma tells us that the chromatic number of X is at least d4/2.704e = 2, which
isn’t very useful. In fact, we know that 2 is not good enough because the graph is
not bipartite. Colouring v1 and v4 green, v2 and v5 red, and v6 and v3 blue shows
that χ(X) = 3.


