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1. Introduction

So far in this seminar we have been focussed on graphs, in particular graphs that are good
expanders. Here we will talk about a higher dimensional generalization of graphs along with the
corresponding generalized concept of “being Ramanujan” for these objects. The generalization we
shall be considering are “Simplicial Complexes” or more specifically buildings.

The primary references for these notes are:

• Lubotzky, Samuels and Vishne - Ramanujan Complexes of Type Ad.
• Mark Ronan - Buildings: Main Ideas and Applications I and II.

2. Simplicial Complexes

Definition 2.1. A Simplicial Complex is the “gluing together” of simple building blocks called
cells (or simplicies) in a manner which satisfies certain axioms.

• A 0-cell is a point.
• A 1-cell is a line connecting 2 points (0-cells).
• A 2-cell is a triangle filling in the area between 3 lines (1-cells).
• A 3-cell is a tetrahedron which is the volume within 4 triangles (2-cells).
• An n-cell is the connecting space for (n+ 1) many (n− 1)-cells.

The main axiom concerning gluing is that simplicies may only be glued along sub-simplicies.

One can say a lot of things about simplicial complexes in general but we shall stick with these
simplistic notions for the purposes of these notes.

3. Construction of the Building for GLn(Qp)

We will now construct what is known as the “Affine Building” of GLn(Qp). For now we will just
say that a building is a special type of simplicial complex, we will talk briefly about what makes
these special later.

Remark. One should note that most of the construction that follows works out in much the same
way if we move to finite a extension of Qp or to other algebraic groups.

We should also remark that the building for GLn(Qp) is precisely the higher dimensional analog
of the “Bruhat-Tits tree” for GL2(Qp) which Atefeh discussed in the previous lecture.

Definition 3.1. A (full) Zp-lattice L ⊂ Qn
p is a finitely generated free Zp submodule such that

Qp · L = Qn
p .

We introduce an equivalence relation on the set of all lattices in Qn
p . We say two latices are

equivalent, written L1 ∼ L2, if there exists C ∈ Qp such that L1 = CL2.
We will now construct the simplicial complex for the building X of GLn(Qp), we do so by first

defining the 0-cells, then the 1-cells, and so forth.

• The 0-cells (vertices) of X are the equivalence classes of lattices in Qn
p .
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• The 1-cells (edges) of X are the lines which pairs [L1], [L2] where we have L1 ⊃ L2 ⊃ pL1

for some representatives L1, L2 of the equivalence classes.
• We take for d-cells every possible complete subgraph (in the already defined 1-skeleton) on
d+ 1 many 0-cells.

Equivalently, we can describe for example the 2 cells as all collections [L1], [L2], [L3] with
L1 ⊃ L2 ⊃ L3 ⊃ pL1. This generalizes for d-cells.

We would like to be able to describe a bit the local structure of this complex, in particular to
describe and classify the edges coming from a vertex. As we have seen for GL2 one strategy is to
look at the quotients of these lattices and work in a vector space over the residue field.

That is, for L0 ' Zn
p we have L0/pL0 ' Zn

p/pZn
p ' Fnp . If we call this quotient map φ we see

that if L0 ⊃ L1 ⊃ pL0 then φ(L1) is a subspace of Fnp . Conversely we remark that every subspace

V of Fnp corresponds to a different lattice φ−1(V ). We are consequently interested in describing
the possible subspaces of Fnp . Moreover, we have under this correspondence that nested subspaces
correspond to “Connected Vertices” and in particular we have that if 0 ⊂ V1 ⊂ · · · ⊂ Vr ⊂ Fnp then
this corresponds to lattices L0 ⊃ Lr ⊃ Lr−1 ⊃ · · · ⊃ L1 ⊃ pL0 which is precisely to say that an
r-flag in Fnp corresponds precisely to a (r− 1)-cell containing L0. From this it is clear that X is an
(n− 1)-simplicial complex as this is the length of a maximal flag.

Remark. We observe that the number of 1-dimensional subspaces in Fnp is given by:

pn − 1

p− 1

The number of 2-dimensional subspaces is:

(pn − 1)(pn − p)
(p2 − 1)(p2 − p)

The number of d-dimensional subspaces follow similar formulae.
In particular if we restrict to the X1 (the 1-cells) the graph has a certain regularity.

4. Types of adjacency

We are interested in trying to give slightly more structure to the building. We observe that in the
above counting of edges that a potentially interesting property of an oriented edge L1 ⊃ L2 ⊃ pL1

is the dimension of the corresponding subspaces or equivalently the index of the one lattice in the
other.

We define a map on the ordered 1-cells of X with values in Z/nZ via:

ρ(L1, L2) 7→ dim(L1/L2) = n− dim(φ(L2)).

This does depend on choice of ordering but only in that ρ(L1, L2) = n− ρ(L2, L1).
We say the 0-cell L2 is k-adjacent to L1 if ρ(L1, L2) = k.
We saw in Luiz’s talk that the usual “Adjacency Operator” acts as an operator on functions on

vertices, we now extend this to the concept of colored adjacency. In particular we define:

L2(X0) =

{
f : X0 → C|

∑
x∈X0

|f(X)| <∞

}
and we have the operator A : L2(X0)→ L2(X0) given by:

Af(x) =
∑

[x,y]∈X1

f(y).



Analogously we define the operators Ak : L2(X0)→ L2(X0) to be:

AK(f)(x) =
∑

[x,y]∈X1

ρ(x,y)=k

f(y)

We remark that these operators are bounded (since the graph is regular), commuting (because
2-step paths of different sizes can be done in “either order”). Moreover the adjoint of Ak is An−k
(which is based on the fact thatρ(x, y) = n− ρ(y, x)) and so the operators are normal.

We define the Hecke Algebra H(GLn(Qp),GLn(Zp)) to be the algebra generated by these
operators.

Remark. Under the correct interpretation of modular forms as functions on lattices this is very
similar to the usual Hecke Operator (at p).

One of the properties Luiz proved was a statement along the lines of saying that the non-trivial
eigenvalues of the adjacency operator on a quotient of a regular tree have a relationship to the
eigenvalues of the adjacency operator on the tree. Moreover, he defined a Ramanujan graph to be
one where “The non-trivial eigenvalue of the adjacency operator is equal to an eigenvalue of the
adjacency operator on its covering tree”.

As such, we use this phrasing of being Ramanujan in order to generalize it to these higher
dimensional complexes.

First, we define the simultaneous spectrum S of (A1, . . . , An) to be:

S = {(a1, . . . , an) ∈ Cn|∃f ∈ L2(X0) with Akf = akf}.

Definition 4.1. We say that a finite quotient C = Γ\X is Ramanujan if the non-trivial simul-
taneous spectrum of the Ak acting on C is contained in S.

Remark. We remark that the colored adjacency operators do in fact descent to operators on the
quotient because our notion of coloured adjacency is preserved by the left action of GLn(Qp).

We now give a description of the simultaneous spectrum of these operators. Let σk be the kth

elementary symmetric function. The simultaneous spectrum of the Ak is:

S = {(pk(n−k)/2σk(z1, . . . , zn))k=1...n| |zi| = 1, z1z2 · · · zn = 1}

The projection to the kth component is a simply connected domain with boundary:

{pk(n−k)/2σk(eiθ, . . . , eiθ, e−(n−1)iθ)|θ ∈ [0, 2π]}

Remark. The trivial eigenvectors are the generalizations of taking the constant functions on the
quotient. The associated eigenvalues take on the form:

ζkpk(n−k)/2σk(p
−(n−1)/2, . . . , p(n−1)/2)

for a choice ζ of nth root of unity. These are constructed using 1-dimensional spherical represen-
tations of GLn.

This definition raises the question of how to find interesting subgroups Γ. There are theorems by
[LSV] and others which give a large class of examples where these are or are not Ramanujan. The
condition which LSV prove is that this is equivalent to certain (ie spherical) subrepresentations of
L2(Γ\X) all being tempered.



5. What makes this a “Building”?

We said we were constructing a building, so now the question is, “what makes this a building?”.
First we should say what a building is. A building is a simplicial complex which is a union
of “apartments” satisfying certain combinatorial properties. Rather than list the properties in
general I will simply point out what they are in the context of the building we have created.

But first, what are the apartments of X?
Given e1, . . . , en a basis of Qn

p the associated apartment is:

Σ = {L = Zpa1e1 ⊕ · · · ⊕ Zpanen|ai ∈ Q∗p}.
A lot of the properties of interest concern the automorphism group of the structure, so we should

first describe what this is.
GLn(Qp) acts as automorphisms of X (as a building) this action preserves colored adjacency

and the structure of apartments, its kernel is the center Z(GLn(Qp)) ' Qp. Moreover, this action
is transitive.

Remark. We would like for this to be the full automorphism group of X (as a building), it however
is not in general. We do however have:

Aut(X) = GLn(Qp)/Z(GLn(Qp)) + {Automorphisms of a certain Dynkin Diagram}
The only automorphism of the dynkin diagram in our case corresponds to L 7→ L∨.

(To see why this might be true one should look at the relationship to algebraic structures in the
following section, and consider what automorphisms of X could stabilize both an apartment and
the vertices of a simplex contained within it).

So what properties do these apartments have that make this a nice structure?

• GLn(Qp) acts transitively on apartments
This holds since we can map any basis to any other.

• If L1, . . . , Lr are in a single simplex of X there exists a single apartment containing them.
This holds since we can find a coherent basis for our flag and use that.

• The stabilizer of an apartment acts transitively on its (n− 1)-simplexes
To see this involves looking at what is required for a simplex to be in an apartment and

what actions stabilize an apartment.
• If a simplex is contained in 2 different apartments there is a map taking one apartment to

the other which vertex stabilizes the simplex.
This involves looking at what is required to be in 2 apartments.

The above properties amount to the statement that what we have constructed is a building.

6. Relationship to Algebraic Structures

We have now constructed a simplicial complex which comes with the action of an algebraic group
GLn(Qp). When one has an algebraic object acting on a geometric object one is often interested
in what the stabilizers of various structures involved are. In this context they have algebraic
significance.

• For L = Zn
p we have Stab(L) = GLn(Zp) = K which is a maximal compact subgroup.

Consequently we can view X0 ' GLn(Qp)/K. The stabilizers of other latices are just
conjugates.

Remark. The stabilizer of an equivalence class is the center times the stabilizer of a
representative.



• The stabilizer of an (n− 1)-simplex will be a Borel subgroup B. That is for some choice of
basis it is the group of upper triangular matrices.
• The stabilizer of an apartment is the normalizer N of a maximal torus T .

That is to say all we can do is rescale the ei and permute them which corresponds then
to a diagonal matrix (a torus) times Sn (under the permutation matrix realization) which
is the torus’ normalizer.
• The simultaneous stabilizer of a simplex and an apartment containing it is B ∩ N = T a

maximal torus.
• The quotient W = N/T thus correspond to automorphisms of the (n−1)-simplex which fix

an apartment containing it. This group is a coxeter group and acts via reflections on the
symplex. It is the “Dynkin Diagram” of this group which essentially determines to what
extent GLn(Qp)/Z(GLn(Qp)) fails to be the automorphism group of the building X.

7. The Spherical Building

We very briefly mention another building which is associated to GLn(Qp), that is its Spherical
Building. Here instead of associating lattices to 0-cells we use for 0-cells the subspaces of Qn

p and
we use the containment of subspaces to give the structure of 1-cells.

Much of the remainder of the theory is the same. In a certain sense one can describe the
Spherical Building as the “Infinite Ends” of the affine building (a compatible sequence of lattices
should ‘converge’ to a subspace). In particular, for GL2(Qp) the ends of the graph are isomorphic
to P (Qp) which is the spherical building.


