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In this supplementary document, we provide complete details of the modified EM algorithm,
proofs of the theoretical results on the asymptotic convergence and consistency of our penalized
maximum likelihood estimates and predictive density estimates, and the results of additional nu-
merical experiments not included in the main document. In the following, we denote the true model
parameter vector as θ⋆ ∈ Θ ⊆ RK, and denote a generic element of a parameter vector θ as
θj , j = 1, . . . , K.

A1 Methodology details

A1.1 Penalty functions

The well-studied choices of the penalty function rλ in Section 3 of the main manuscript are:

• lasso (L1 norm): rλ(θj ) = λ|θj |;

• Adaptive lasso (adalasso, weighted L1 norm): rλ(θj ) = λŵj |θj |, with ŵj = |θ̂j |–γ and
γ > 0, where θ̂j is a

√
n–consistent estimator of the true parameter θ⋆j ;

• scad: rλ(θj ) is such that r ′λ(θ) = sgn(θ)
(
λ1{|θ|≤λ} + (aλ–|θ|)+

(a–1) 1{θ>λ}

)
, with parameter a >

2;

• mcp: rλ(θj ) is such that r ′λ(θ) = sgn(θ) (aλ–|θ|)+
a , with parameter a > 1.

In Section A2 below we list general conditions on rλ required to prove our theoretical results.

A1.2 Expectation (E-) step

Here we provide details of the forward-backward algorithm to compute the quantities

ζ
(k)
t ,ij = P(ξ(t–1)i = 1, ξtj = 1|y1:n ,θ(k), sp), ζ

(k)
ti = P(ξti = 1|y1:n ,θ(k), sp),
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at the (k +1)-th iteration of the EM algorithm. The forward recursion is also known as filtering, and
the backward recursion as smoothing. We omit the terms (θ(k), sp) from the notation throughout.

Recall the variable

ξt :=

 ξt1...
ξtM

 =

1{st=1}
...

1{st=M}

 .

Let ιm denote the m-th column of the M-dimensional identity matrix. Using the model assumptions,
we can write, for t ≥ p + 1,

P(yt |ξt–1 = ιi , y1:t–1) := P(yt |ξ(t–1)i = 1, y1:t–1)

=
M∑

m=1
P(yt |ξ(t–1)i = 1, ξtm = 1, y1:t–1)P(ξtm = 1|ξ(t–1)i = 1, y1:t–1)

=
M∑

m=1
P(yt |ξtm = 1, y1:t–1)P(ξtm = 1|ξ(t–1)i = 1)

=
M∑

m=1
P(yt |ξtm = 1, y1:t–1)αim =

M∑
m=1

αimϕ
(
yt ;µ

(m)
t ;Σ(m))

)
.

We collect the densities of yt conditional on ξt and y1:t–1 in the vector

ηt :=

P(yt |ξt = ι1, y1:t–1)
...

P(yt |ξt = ιM, y1:t–1)

 =


ϕ
(
yt ;µ

(1)
t ;Σ(1))
...

ϕ
(
yt ;µ

(M)
t ;Σ(M))

 .

Thus, we can rewrite the above conditional density as

P(yt |ξt–1 = ιi , y1:t–1) = ηT
t PTιi . (1)

As the regime-governing Markov chain is unobservable, the information at t – 1 only consists of
observations y1:t–1 and not the regime indicator vector ξt–1. For the purpose of estimation, we
replace the vector ξt–1 by its conditional expected value, which in itself is estimated from the
observed data as follows.

Denote the vectors

ξ̂t |τ := E(ξt |y1:τ ) =

P(ξt = ι1|y1:τ )
...

P(ξt = ιM|y1:τ )

 =

P(ξt1 = 1|y1:τ )
...

P(ξtM = 1|y1:τ )


for p ≤ τ ≤ t and t ≥ p + 1. Thus, using (1), the conditional probability density of yt given y1:t–1
can be written as

P(yt |y1:t–1) =
M∑

m=1
P(yt , ξt–1 = ιm |y1:t–1)

=
M∑

m=1
P(yt |ξt–1 = ιm , y1:t–1)P(ξt–1 = ιm |y1:t–1)
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=
M∑

m=1
P(yt |ξ(t–1)m = 1, y1:t–1)P(ξ(t–1)m = 1|y1:t–1)

= ηT
t PT

M∑
m=1

ιm P(ξ(t–1)m = 1|y1:t–1) = ηT
t PTξ̂t–1|t–1.

On the other hand, for m = 1, . . . , M, we have

P(ξtm = 1|y1:t–1) =
M∑

i=1
P(ξtm = 1|ξ(t–1)i = 1, y1:t–1)P(ξ(t–1)i = 1|y1:t–1)

=
M∑

i=1
αimP(ξ(t–1)i = 1|y1:t–1) = (PTξ̂t–1|t–1)m ,

where (v)m refers to the m-th element of a vector v. Thus, for all t ≥ p + 1, we have

ξ̂t |t–1 = PTξ̂t–1|t–1,

and hence we get

P(yt |y1:t–1) = ηT
t ξ̂t |t–1 = 1T

M

(
ηt ⊙ ξ̂t |t–1

)
,

where ⊙ denotes the element-wise matrix multiplication and 1M = (1, . . . , 1)T. Then

ξ̂t |t =
ηt ⊙ ξ̂t |t–1

1T
M

(
ηt ⊙ ξ̂t |t–1

) , (2)

which follows since, by Bayes’ rule,

P(ξtm = 1|y1:t ) = P(ξtm = 1|yt , y1:t–1) =
P(yt |ξtm = 1, y1:t–1)P(ξtm = 1|y1:t–1)

P(yt |y1:t–1)
.

Now we consider ξ̂t |n . First note that, by Bayes’ rule and the model assumptions,

P(ξtm = 1|ξ(t+1)i = 1, y1:n) = P(ξtm = 1|ξ(t+1)i = 1, y1:t , yt+1:n)

=
P(yt+1:n |ξtm = 1, ξ(t+1)i = 1, y1:t )P(ξtm = 1|ξ(t+1)i = 1, y1:t )

P(yt+1:n |ξ(t+1)i = 1, y1:t )

=
P(yt+1:n |ξ(t+1)i = 1, y1:t )P(ξtm = 1|ξ(t+1)i = 1, y1:t )

P(yt+1:n |ξ(t+1)i = 1, y1:t )

= P(ξtm = 1|ξ(t+1)i = 1, y1:t ),

which we use to write, once more using Bayes’ rule,

P(ξtm = 1, ξ(t+1)i = 1|y1:n) = P(ξtm = 1|ξ(t+1)i = 1, y1:n)P(ξ(t+1)i = 1|y1:n)

= P(ξtm = 1|ξ(t+1)i = 1, y1:t )P(ξ(t+1)i = 1|y1:n)

=
P(ξ(t+1)i = 1|ξtm = 1, y1:t )P(ξtm = 1|y1:t )

P(ξ(t+1)i = 1|y1:t )
P(ξ(t+1)i = 1|y1:n)
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=
P(ξtm = 1|y1:t )P(ξ(t+1)i = 1|ξtm = 1)

P(ξ(t+1)i = 1|y1:t )
P(ξ(t+1)i = 1|y1:n). (3)

Using the above expression, for m = 1, . . . , M, we obtain

P(ξtm = 1|y1:n) =
M∑

i=1
P(ξtm = 1, ξ(t+1)i = 1|y1:n)

=
M∑

i=1

P(ξtm = 1|y1:t )P(ξ(t+1)i = 1|ξtm = 1)
P(ξ(t+1)i = 1|y1:t )

P(ξ(t+1)i = 1|y1:n)

=
M∑

i=1

αmi P(ξ(t+1)i = 1|y1:n)P(ξtm = 1|y1:t )
P(ξ(t+1)i = 1|y1:t )

.

Collecting these into a vector, we get

ξ̂t |n =

P(ξt1 = 1|y1:n)
...

P(ξtM = 1|y1:n)

 =
[
PT
(
ξ̂t+1|n ⊘ ξ̂t+1|t

)]
⊙ ξ̂t |t , (4)

denoting by ⊘ the element-wise division.
From (2) and (4), using the current estimate θ(k), we obtain the computations required in the

E-step as follows:

• Forward recursion (filtering): for t = p + 1, . . . ,n,

ξ̂t |t =
ηt ⊙ ξ̂t |t–1

1T
M

(
ηt ⊙ ξ̂t |t–1

) =
ηt ⊙ P(k)ξ̂t–1|t–1

1T
M

(
ηt ⊙ P(k)ξ̂t–1|t–1

) ,

where ⊙ denotes the element-wise product.

• Backward recursion (smoothing): for t = n – 1, . . . , p + 1, after plugging in the filtered proba-
bilities, we compute

ξ̂t |n =
[
P(k)T (

ξ̂t+1|n ⊘ ξ̂t+1|t

)]
⊙ ξ̂t |t ,

denoting by ⊘ the element-wise division.

Finally, we set ζ(k)
ti = P(ξti = 1|y1:n) as the i-th entry of the vector ξ̂t |n , for i = 1, . . . , M.

Regarding the joint probabilities ζ(k)
t ,ij = P(ξ(t–1)i = 1, ξtj = 1|y1:n), as discussed in (Krolzig,

1997, Chapter 5), they can be expressed in terms of the smoothed probabilities ξ̂t |n,j (j -th entry of
ξ̂t |n), the predicted probabilities ξ̂t |t ,j (j -th entry of ξ̂t |t–1), the filtered probabilities ξ̂t–1|t–1,i (i-th
entry of ξ̂t–1|t–1), and the transition probabilities estimates from the previous iteration. Using (3),
the complete vector of joint probabilities, for t = p + 1, . . . ,n, is estimated by

ξ̂
joint
t |n := vec(P(k)) ⊙

[(
ξ̂t |n ⊘ ξ̂t |t–1

)
⊗ ξ̂t–1|t–1

]
,

where ⊗ denotes the Kronecker product, and whose (j – 1)M + i entry corresponds to the term

ζ
(k)
t ,ij = P(ξ(t–1)i = 1, ξtj = 1|y1:n) =

α
(k)
ij (ξ̂t–1|t–1)i (ξ̂t |n)j

(ξ̂t |t–1)j
,

for i , j = 1, . . . , M. Recall (v)i refers to the i -th element of a vector v.
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A1.3 Maximization (M-) step

A1.3.1 Transition probability matrix

The true transition probability matrix is estimated based on the joint distribution of ξt , ξt+1 given
the full sample y1:n as in (3). From (Krolzig, 1997, Equation 6.14), the estimate is given as

vec(P(k+1)) =
[
ξ̂joint

]
⊘
[
1M ⊗

((
1T
M ⊗ IM

)
ξ̂joint

)]
,

where ξ̂joint :=
∑n

t=p+1 ξ̂
joint
t |n , and IM is the M-dimensional identity matrix.

A1.3.2 AR coefficient matrices

Recall the optimization problem with respect to the AR coefficients for regime m is given as

min
{A(m)

l }p
l=1

1
2(n – p)

n∑
t=p+1

ζ
(k)
tm
(
yt – µ̄

(m)
t
)T

Ω̂
(m,k)(

yt – µ̄
(m)
t
)

+
p∑

l=1

d∑
i ,j=1

rλ1

(
a(m)
l ,ij
)
.

To solve it, we utilize the block-wise coordinate descent algorithm for VAR models suggested by
Basu and Michailidis (2015). Let us first define

Ξ̂m :=


ζ
(k)
(p+1)m 0

. . .

0 ζ
(k)
nm

 , y :=

(yp+1 – ν(m,k+1))T
...

(yn – ν(m,k+1))T

 ,

X :=

Xp+1
...

Xn

 , Xt :=
[
yT
t–1 yT

t–2 . . . y
T
t–p

]
.

Let y(m)
i and b(m)

i denote the i-th column and the i -th row of Ξ̂1/2
m y and [A(m)

1 , . . . , A(m)
p ], respec-

tively. Also let X(m) = Ξ̂
1/2
m X and Ω̂

(m,k)
= (ωij )1≤i ,j≤d . The objective function can be rewritten

as

min
b(m)
i ,i=1,...,d

1
2

d∑
i=1

d∑
j=1

ωij

(
y(m)
i – X(m)b(m)

i
T)T(

y(m)
j – X(m)b(m)

j
T)

+
d∑

i=1

dp∑
j=1

rλ1

(
b(m)
ij
)
,

where the b(m)
ij , j = 1, . . . , dp, are the elements of b(m)

i , i = 1, . . . , d . As suggested in Basu and
Michailidis (2015, Appendix C), we minimize the above objective function cyclically with respect to
each b(m)

i until convergence. We repeat the following procedure for i = 1, . . . , d , until convergence:

1. Set ri = 1
2ωii

∑d
j=1, j ̸=i ωij

(
y(m)
j – X(m)b̂

T
j
)
;

2. Update b̂i = argmin
bi

ωii
2 ∥y(m)

i + ri – X(m)bT
i ∥2

2 +
∑dp

j=1 rλ1

(
bij
)
.

To solve the optimization problem in Step 2 above, we employ a generalized gradient descent.
In particular, we use a modified fast iterative-shrinkage thresholding algorithm (FISTA, Beck and
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Teboulle, 2009b), which was initially devised to solve optimization problems of the form minb g(b)+
rλ(b). For a step size L, the iterative scheme is based on the update

b̂
(k+1)
i = argmin

bi

[
1
2

∥∥∥bi –
(
ẑ(k)
i – Lωii (y

(m)
i + ri – X(m)(ẑ(k)

i )T)TX(m))∥∥∥2
+ L

dp∑
j=1

rλ1

(
bij
)]

(5)

=: h(ẑ(k)
i , L),

where ẑ(k)
i is an interpolation between b̂

(k)
i and b̂

(k–1)
i . Since the considered penalty function is

decomposable with respect to individual elements of bi , the minimization problem above corresponds
to a penalized least-squares problem with orthogonal predictors, and can be solved analytically for
all the penalty functions we consider in this work. The exact formulas for this update for all the
considered penalties are provided in Section A1.3.4.

Ideally, in an optimization algorithm the value of the objective function must not increase when
computed over successive iterations. The original FISTA does not possess this property, making it
vulnerable to divergence. This issue has been circumvented in another work by Beck and Teboulle
(2009a), and we incorporate their approach in our implementation. Another enhancement we im-
plement is known as FISTA with restart (Wen et al., 2017, and references therein), which resets
the interpolation parameter every κ iterations for a pre-specified κ, and gives faster convergence
compared to the original version of FISTA. See Algorithm 2 below.

We compute a step size L that ensures convergence as follows. First note that a Lipschitz
constant of the smooth term in the objective function is λmax(XTΞ̂mX), where λmax(A) denotes
the maximum eigenvalue of a real symmetric matrix A. The knowledge of this constant provides
a suitable step size (Beck and Teboulle, 2009b). For a given regime m ∈ {1, . . . , M}, we can
approximate the corresponding Lipschitz constant by observing the relation

XTΞ̂mX ⪯ XTX,

which holds since each element of the diagonal matrix Ξ̂m lies in the interval (0, 1). Hence, following
Guo et al. (2016, Theorem 4.4), we set L as any value satisfying

L <



2
2C+λmax(XTX)

if C = 0,
2

C+λmax(XTX)
if 0 < C ≤ λmax(XTX)/2,

2

2C+
√
λmax(XTX)2–C2

if λmax(XTX)/2 < C < λmax(XTX),

1
C if λmax(XTX) = C,

(6)

where C is the weak-convexity constant of the penalty r , such that
∑dp

j=1 rλ1(bij )+
C
2 ∥bi∥2 is convex.

This constant C exists for all the penalties considered in this work (see Section A1.3.4 below). By
using such L we ensure the convergence of the algorithm to a local minimum. Our procedure is
summarized in Algorithm 2.

A1.3.3 Covariance and precision matrices

Recall the optimization problem with respect to Σ(m) or Ω(m) is

min
Σ(m)≻0

1
2(n – p)

(
n̂m log |Σ(m)| + tr

(
Ω(m)S(m)))+

d∑
i ̸=j=1

rλ2

(
γ

(m)
ij
)
, (7)
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Algorithm 2 Monotone FISTA with restart for sparse VAR parameter estimation

Initialization: ẑ1
i = b̂

0
i , t1 = 1, κ ≥ 1, L satisfying (6), ε > 0

1: x̂k
i = h(ẑki , L)

2: b̂
k
i = argmin

{
h(x, L) : x ∈ {x̂k

i , b̂
k–1
i }

}
3: tk+1 =

1+
√

1+4t2k
2

4: ẑk+1
i = b̂

k
i +

(
tk–1
tk+1

)
(b̂

k
i – b̂

k–1
i ) +

(
tk

tk+1

)
(x̂k

i – b̂
k
i )

5: If k mod κ = 0 set tk+1 = 1

6: If ∥b̂
k
i – b̂

k–1
i ∥/∥b̂

k–1
i ∥ < ε return b̂

k
i , else k = k + 1 and go to 1

with Γ(m) = (γ(m)
ij )1≤i ,j≤d being either Σ(m) or Ω(m). To simplify the notation, we drop the

index m below. Loh and Wainwright (2015) proposed and theoretically studied an algorithm for
regularized M-estimation for non-convex problems. Their algorithm performs a generalized gradient
descent on the objective function, which is assumed to be the sum of a smooth function and a
penalty function, similar to FISTA. We adopt their approach and implement it as follows. Let C be
the weak-convexity constant of the penalty r , so that

∑d
i ,j=1 rλ2(Γ)+ C

2 ∥Γ∥
2
F is convex (see Section

A1.3.4). Next we provide the updates for the scenario where Σ is penalized, followed by the updates
in the scenario where the penalty is instead on Ω.

Penalization on the covariance matrix
The update with step size Lk for the optimization problem for penalized covariance is given as

Σ(k+1) ∈ argmin
Γ≻0

{
1
2

∥∥∥Γ –
(
Σ(k) – Lk

(
Ω(k) – Ω(k)SΩ(k) – CΣ(k)))∥∥∥2

F
+ Lk

( d∑
i ,j=1

rλ2(γij ) +
C
2
∥Γ∥2

F

)}
(8)

=: hΣ(Σ(k), Lk ),

which has a closed form for all the penalties we consider (see Section A1.3.4). Loh and Wainwright
(2015) provided error bounds with respect to a global minimizer that hold with high probability,
and stated that the iterates (8) quickly converge to a neighborhood of any global optimum under a
set of smoothness and convexity conditions. Our objective function meets those requirements since
its differentiable term has a Lipschitz-continuous gradient on a compact constraint set of the form
{Σ : Σ ⪰ δI} for some δ > 0. This can be verified using ideas similar to those of Bien and Tibshirani
(2011, Appendix 2). We compute the step size Lk using a backtracking line search; see, for example,
Parikh and Boyd (2013, Section 4.2).

Penalization on the precision matrix
For the penalized precision matrix case, the difference arises on the differentiable part of the

objective function and its gradient, in comparison with the covariance case. We perform each
update as

Ω(k+1) ∈ argmin
Γ≻0

1
2

∥∥∥Γ –
(
Ω(k) – Lk

(
–Σ(k) + S – CΩ(k)

))∥∥∥2

F
+ Lk

( d∑
i ,j=1

rλ2(γij ) +
C
2
∥Γ∥2

F

)
(9)

=: hΩ(Ω(k), Lk ).
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The theoretical properties of the iterative procedure as investigated by Loh and Wainwright (2015)
are also applicable. The required Lipschitz continuity is implied when imposing the constraint
Σ–1 ⪰ δI for some specific δ > 0. Such a δ can be obtained with a derivation similar to Bien and
Tibshirani (2011, Appendix 2). The final algorithm for solving (7) for a fixed regime m is outlined
in Algorithm 3.

Algorithm 3 Generalized gradient descent for sparse VAR covariance or precision matrix estimation

Initialization: Σ(1) = S, Ω(1) = S–1, L1 ≤ 1, ε > 0
1: Perform backtracking line search to obtain step size Lk
2: (Penalized covariance) Σ(k+1) = hΣ(Σ(k), Lk )

(Penalized precision) Ω(k+1) = hΩ(Ω(k), Lk )
3: If ∥Σ(k+1) – Σ(k)∥F/∥Σ(k)∥F < ε or ∥Ω(k+1) – Ω(k)∥F/∥Ω(k)∥F < ε return (Σ(k+1),Ω(k+1))

else k = k + 1 and go to 1

A1.3.4 The proximal operators

The updates in Algorithm 2 and 3 of Section A1.3.3 have a closed-form formula for the penalty
functions we consider, which we provide here. The update steps in (5), (8), and (9) can be obtained
by solving the following

min
x

1
2
(x – z )2 + νrλ(x ),

for x ∈ R \ {0}, fixed z ∈ R and ν > 0. For example, in Algorithm 2, each element of bi as in (5),
corresponds to x here. The formulas can be obtained by equating the subgradient of the objective
function above to zero and solving for x . Thus, for a particular choice of the penalty function rλ,
the corresponding formulas for the updates in Algorithm 2 and 3 are given as:

x̂l1 =

{
0, 0 ≤ |z | ≤ νλ,
z – sign(z )νλ, |z | ≥ νλ;

(10)

x̂scad =


0, 0 ≤ |z | ≤ νλ,
z – sign(z )νλ, νλ < |z | ≤ (1 + ν)λ,
(a–1)z–sign(z )aνλ

a–1–ν , (1 + ν)λ < |z | ≤ aλ,
z , |z | ≥ aλ;

x̂mcp =


0, 0 ≤ |z | ≤ νλ,
bz–sign(z )bνλ

b–ν , νλ < |z | ≤ bλ,
z , |z | ≥ bλ.

In the updates of Algorithm 2 and 3, we are required to set ν = (L + C)–1, with C equal to
0, (a – 1)–1 or b–1 for penalty functions L1-norm, scad or mcp, respectively; these are the weak
convexity constants. For the adaptive lasso, the update can be obtained by replacing λ in (10) with
the weighted version λŵ , for a weight of the form ŵ = |β̂|–γ , where β̂ is a

√
n-consistent estimator of

the parameter coordinate being estimated. We use the maximum-likelihood estimator with γ = 1.
If the MLEs of the covariance or precision matrices are computationally singular, following the idea
in ridge regression, we regularize them by adding a multiple of the identity matrix.
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A1.4 Model initialization and identification

The performance of the modified EM algorithm is heavily reliant on an appropriate initialization.
Our proposal here is motivated by the desired behaviour from a good estimate, of having a moder-
ately high likelihood value. Define

y :=

yT
p+1
...

yT
n

 , X :=

Xp+1
...

Xn

 , Xt :=
[
1 yT

t–1 yT
t–2 . . . y

T
t–p

]
.

For m = 1, . . . , M, we set the first iterates as

[ν(m,1), A(m,1)]T = [XTX]–1XTy,

Σ(m,1) =
1

n – p

[
y – X[ν(m,1) A(m,1)]T

]T [
y – X[ν(m,1) A(m,1)]T

]
,

P(1) = αij
(1) =

{
1
M + δ, i = j ,

1
M–1(1 – α(1)

ii ), i ̸= j .

In other words, we use the least-squares and MLE estimates for a VAR(p) model (true p being
assumed as given) as initial coefficient and covariance matrices for all the regimes. We use a gen-
eralized inverse if necessary. The transition probability matrix initial estimate is just a symmetric
matrix, whose diagonal is specified by the quantity δ ∈ (0, M–1), and ensures that the estimates do
not fall into a local maximum.

The interchange of regime labels in the MSVAR models during the estimation procedure can
lead to a model identification problem. The model parameters belong to the same equivalence class
if their regime labels are a permutation of any other label set in the class, and thus all the parameter
combinations in an equivalence class lead to the same model. After convergence of the EM algorithm,
we perform a permutation of the regime labels, as suggested by Krolzig (1997), according to a pre-
specified ordering on the magnitude of the estimated VAR coefficients. For example, different regimes
labels can be indexed based on the increasing order of mean of the intercept vector. This ensures
that the labels of the final estimates always follow the pre-specified order which takes care of the
model identifiability. Another requirement of model identification is the existence of a well-defined
distribution function. This condition is trivially satisfied as we assume Gaussian noise in our MSVAR
models.

A1.5 Selection of the penalty parameters λ1 and λ2

Inspired by Zhang et al. (2010), we select the penalty parameters by optimizing a model selection
criterion, which is composed of a loss function and a model complexity term which involves the
number of degrees of freedom of a candidate model. Here, we assume a fixed number of regimes M
and AR-order p.

Let θ̂n(λ) be the MPLE given a pair λ = (λ1,λ2) ∈ I ×I ⊂ R2, for a pre-specified set of values
I. We denote the regime-specific degrees of freedom of the corresponding fitted MSVAR model as

Dm(θ̂n(λ)) =
p∑

k=1

d∑
i ,j=1

1
{(â(m)

k ,ij )̸=0}
+

d∑
i ,j=1

1
{γ̂(m)

ij ̸=0}
, m = 1, . . . , M,
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and define the selection criterion

C1(λ) = –2ln(θ̂n(λ); sp) + c
M∑

m=1
Dm(θ̂(λ)),

where ln is the conditional log-likelihood and c is a constant controlling the model complexity. A
similar criterion, denoted by C, is used in the main manuscript for the selection of the number of
regimes M. In the above criterion, if c = 2 or c = log(n –p), we obtain the AIC or BIC, respectively.
A data-dependent choice of the tuning parameters λ = (λ1,λ2) is

λ ∈ argmin
λ0∈I×I

C1(λ0). (11)

The usual practice is to take I to be a discretization of the set [0, λ̃] for some λ̃ > 0, and choose
λ = (λ1,λ2) as in (11). In our numerical studies, the pairs (λ1,λ2) take values on a grid with
increments of 0.25 on the logarithmic scale.

We propose a computationally efficient coordinate-descent approach which optimizes C1 by per-
forming a cyclical search on either coordinate of the argument λ0 ∈ I × I, while keeping the other
fixed until reaching convergence. To increase the accuracy, we perform additional searches at different
resolutions of I. Thus, the coarsest grid corresponds to a global coordinate descent, whereas subse-
quent searches are performed at decreasing resolutions in a neighborhood of the optimum grid point
found in the previous resolution. This refines the result further. The discrete nature of the problem
enables this procedure to converge to a local optimum. For a step size s > 0, window radius w ∈ N,
and center λ > 0, let Iw (s,λ) := {max{λ–ws, 0}, . . . ,λ–2s,λ–s,λ,λ+s,λ+2s, . . . ,min{λ+ws, λ̃}}.
Algorithm 4 summarizes the selection procedure of the penalty tuning parameters and number of
regimes.
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Algorithm 4 Selection of Tuning Parameters and Number of Regimes

1: Input: Mmax ∈ N, λ̃ > 0, λ̂0
2 = 0

2: For M = 1, . . . , Mmax do
3: For k = 1, 2, . . . do

λ̂k
1 ∈ argmin

λ1∈I∞(s,λ̃/2)
C1(λ1, λ̂k–1

2 ),

λ̂k
2 ∈ argmin

λ2∈ I∞(s,λ̃/2)
C1(λ̂k

1 ,λ2),

until λ̂k
i = λ̂k–1

i , i = 1, 2
4: Set ci = λ̂k

i , i = 1, 2
5: For j = 1, 2 do
6: λ̂0

2 = c2
7: For k = 1, 2, . . . do

λ̂k
1 ∈ argmin

λ1∈Iw (s/2j ,c1)
C1(λ1, λ̂k–1

2 ),

λ̂k
2 ∈ argmin

λ2∈ Iw (s/2j ,c2)
C1(λ̂k

1 ,λ2),

until λ̂k
i = λ̂k–1

i , i = 1, 2
8: Set ci = λ̂k

i , i = 1, 2
9: Set λM = (λ̂k

1 , λ̂k
2)

10: Compute C(M) defined in the main manuscript using λM
11: Set M̂ = argmin{C(1), . . . , C(Mmax)}
12: Return (λM̂, M̂)

A1.6 AR-order selection

By adapting the approach for VARs by Nicholson et al. (2020), we devise a procedure for AR-order
selection that has a superior performance for our models compared to a criterion-based approach. It
is based on penalizing the AR coefficients using the group lasso so that the spurious lag entries are
shrunk to zero. This AR-order selection procedure, described next, is straightforward to incorporate
into Algorithm 4.

First note that the AR-order selection can be done by relying on the consistency of the penalized
estimator. We can consider a pre-specified AR-order p0 ≥ p, and express an MSVAR model with
AR-order p as an MSVAR model with AR-order p0, with A(m)

i ≡ 0d×d for i > p and m = 1, . . . , M.
However, a methodologically more suitable approach is to consider the group lasso (Yuan and Lin,
2006) as done for VAR models by Song and Bickel (2011) and Nicholson et al. (2020).

Group lasso shrinks all the elements in a given group simultaneously towards zero, that is, all
the coefficients in a group are simultaneously estimated as either zero or nonzero. Nicholson et al.
(2020) proposed a series of hierarchical-lag penalties derived from the group lasso. The groups
are designed in a nested manner so that if the group corresponding to lag i is set to zero, then its
nested groups, corresponding to a lag greater than i , remain zero. Among the various hierarchical
penalties, the element-wise hierarchical penalty is the most suitable for our models as we do not
assume any particular sparsity structure on the AR coefficient matrices. It is also straightforward
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to optimize in our context. For regime m, we write

min
{A(m)

l }p
l=1

1
2(n – p)

n∑
t=p+1

ζ
(k)
tm
(
yt – µ̄

(m)
t
)T

Ω̂
(m,k)(

yt – µ̄
(m)
t
)

+ R(A(m)
1 , . . . , A(m)

p0 ;λ),

R(A(m)
1 , . . . , A(m)

p0 ;λ) = λ

d∑
j=1

d∑
k=1

p0∑
i=1

√
p0 – i + 1

( p0∑
ℓ=i

(A(m)
ℓ )2jk

)1/2

,

so that each group indexed by lag i contains the element (j , k) of all matrices of lag ℓ ≥ i . Further-
more, the adaptive version of the hierarchical penalty is straightforward to obtain as an extension
of the adaptive group lasso (Wang and Leng, 2008). After estimation we can set

p̂ = max{k ∈ {1, . . . , p0} : Â
(m)
k ̸= 0d×d}. (12)

An advantage of this AR-order selection method is that the penalty, and therefore the optimiza-
tion problem, can be decomposed along coordinates, which enables us to apply the optimization
framework we employ for the penalized AR coefficients estimation in Section A1.3.2.

We examine the performance of the above AR-order selection method via simulations. We set
M = 2, d = 20, and sample sizes n ∈ {400, 600, 800}. We consider the true AR-orders p = 1, 2, 3,
and set the over-specified candidate p0 = 4. We compute the mean of the performance measure
1{p̂=p}, with p̂ obtained using (12). For both sparsity scenarios S1 (sparse covariance matrices)
and S2 (sparse precision matrices), we obtain a mean performance measure of the true AR-order
selection of at least 0.90. It is worth mentioning that using a AR-order selection procedure based
on the BIC did not provide satisfactory results.

A2 Theoretical results

In this section, we study the large sample properties of the MPLE θ̂n introduced in Section 3 of the
main manuscript, when the true number of regimes M is correctly specified or over-estimated. We
denote the true MSVAR model parameter vector by θ⋆, and partition it as θ⋆ = [(θ⋆A)T, (θ⋆A

c
)T]T,

so that θ⋆A
c

= 0, and θ⋆A is a subvector of all the remaining non-zero parameters. Here, A also
denotes the set of indices k of all active (nonzero) parameters, and its complement Ac , similarly
contains the indices of all inactive (zero) parameters. Then, the cardinality of the index set of a
parameter vector θ, denoted as |A ∪ Ac |, is equal to K = M(d + pd2 + d(d + 1)/2) + M(M – 1).
Furthermore, we let E ⊂ A ∪ Ac , denote the set of indices k of the model parameters on which
we perform the penalization. Recall, that we do not penalize the parameters corresponding to
the transition probability matrix P of the hidden Markov chain, the AR intercepts ν(m), and the
diagonal entries of the covariance matrices Σ(m),m = 1, . . . , M. To establish our theoretical results,
we require certain conditions on the process {Yt}, the penalty function rλn used in (4) of the
main manuscript, and the tuning parameter λn . Let r ′λn

(·) and r ′′λn
(·) denote the first and second

derivatives, respectively, of the function rλn (·) with respect to θ.

Assumption 1. For all λ ∈ R, rλ(0) = 0. The function rλ(θ) is continuous, symmetric, nonnegative,
nondecreasing, continuously differentiable for all |θ| > 0, and twice continuously differentiable for
all |θ| > cλ for some constant c > 0.

Assumption 2. As n → ∞,λn = o(1), and for true value of model parameters θ⋆k ,

an = max
k∈A∩E

{|r ′λn
(θ⋆k )|} = O(n–1/2), bn = max

k∈A∩E
{|r ′′λn

(θ⋆k )|} = o(1).
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Assumption 3. lim inf
n→∞

lim inf
|θ|=O(n–1/2)

√
nr ′λn

(θ) = +∞.

Assumption 1 imposes a differentiability condition on the penalty function which allows to per-
form the Taylor expansion of the objective function around the true optimizer. Assumption 2
is essential to show the existence of a

√
n-consistent optimizer of the penalized conditional log-

likelihood function, and Assumption 3 is required to prove the sparsity property for the estimator of
the model parameter. For simplicity of exposition, we suppose that the penalty function rλ used for
the covariance (or precision) matrix parameters is the same as for the VAR matrix coefficients, but
this is not a requirement. In addition, in contrast to the related work of Monbet and Ailliot (2017),
we employ a unique tuning parameter λn for all the regimes; the computational burden is alleviated
in this way and our experiments show that one tuning parameter for all the regimes also performs
well. As we consider the situation that for any θ ∈ Θ, we have maxm∈{1,...,M} λmin (Σm) ≥ δ > 0,
we do not penalize for a possibly singular Σm . Here, λmin(A) denotes the smallest eigenvalue of
a real symmetric matrix A. We assume that the true number of regimes in the MSVAR model is
already given.

We use the results on consistency and asymptotic normality of the maximum-likelihood estima-
tors obtained by Douc et al. (2004) for the MSVAR models. All their assumptions follow in our
setting of a homogeneous regime-governing Markov chain St and the Gaussian noise process.

Proposition 6.1. (Douc et al., 2004, Proposition 1-3) There exists a deterministic function l(·)
such that

(i) for all sp ∈ {1, . . . , M}, and θ ∈ Θ,

lim
n→∞

n–1ln(θ; sp) = l(θ), Pθ⋆-a.s. and in L1(Pθ⋆);

(ii) limn→∞ supθ∈Θmaxsp |n–1ln(θ; sp) – l(θ)| = 0, Pθ⋆-a.s.;

(iii) l(θ) ≤ l(θ⋆) and l(θ) = l(θ⋆) if and only if θ = θ⋆.

The above results ensure the strong consistency of the conditional MLE estimator. Next, we
also have a central limit theorem for the score function and a law of large numbers for the observed
Fisher information.

Proposition 6.2.

(i) (Douc et al., 2004, Theorem 2) (Central limit theorem) For any sp ∈ {1, . . . , M}

n–1/2∇θln(θ⋆; sp)
Pθ⋆–→ N

(
0, I(θ⋆)

)
,

where I(θ⋆) is the asymptotic Fisher information matrix, defined as the covariance of asymp-
totic score function.

(ii) (Douc et al., 2004, Theorem 3) (Law of large numbers) For any sp ∈ {1, . . . , M} and a possibly
stochastic sequence {θ⋆n} ∈ Θ converging to θ⋆ Pθ⋆-almost surely, we have

–n–1∇2
θln(θ⋆n ; sp) –→ I(θ⋆),Pθ⋆-a.s.
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As fixing the initial state of the regime-governing Markov chain does not affect our asymptotic
convergence results, we simplify our notation for ln(θ; sp) and Ln(θ; sp) by rewriting them as ln(θ)
and Ln(θ), respectively. The following results hold for any sp ∈ {1, . . . , M}. We first show that under
the correct specification of M and appropriate choices of (rλn , λn), there exists a local maximizer
θ̂n of the penalized conditional likelihood function Ln(θ) that is a consistent and sparse estimator
of θ⋆.

Theorem 1. Suppose that {Yt} is generated according to a stationary and ergodic MSVAR process.
Further assume that Assumption 1 - 3 on the tuning parameter λn and penalty function rλn hold.
Then, as n → ∞,
(i) there exists a local maximizer θ̂n of the penalized log-likelihood Ln(θ) such that
∥θ̂n – θ⋆∥ = OP(n–1/2);
(ii) for any

√
n–consistent estimator θ̂n of the true sparse parameter θ⋆ with θ⋆A

c
= 0, we have

P
(
θ̂A

c
n = 0

)
→ 1.

Proof. Let αn = n–1/2 + an . For the first claim, it suffices to show that for n ≥ n0 with n0 large
enough, for any ε > 0 there exists a large constant C such that

P
(

sup
∥u∥=C

Ln(θ⋆ + αnu) < Ln(θ⋆)
)
≥ 1 – ε. (13)

In other words, we need to show that for ∥u∥ = C, as n → ∞, Ln(θ⋆ + αnu) – Ln(θ⋆) < 0
uniformly in u with probability approaching to one. As the penalty function is non-negative, for
k ∈ Ac , rλn

(
θ⋆k + αnuk

)
≥ 0. Also recall that rλn (0) = 0. Then, we have the following inequality:

Vn(u) ≡
(
Ln(θ⋆ + αnu) – Ln(θ⋆)

)
=

1
(n – p)

ln(θ⋆ + αnu) –
∑
k∈E

rλn

(
θ⋆k + αnuk

)
–

1
(n – p)

ln(θ⋆) +
∑
k∈E

rλn

(
θ⋆k
)

≤ 1
(n – p)

(
ln(θ⋆ + αnu) – ln(θ⋆)

)
–
∑

k∈A∩E

(
rλn

(
θ⋆k + αnuk

)
– rλn

(
θ⋆k
))

=: D1n(u) – D2n(u,λn).

We use the Taylor expansion of the likelihood function ln to write:

D1n(u) =
αn

(n – p)
uT∇θln(θ⋆) +

1
2(n – p)

α2
nuT∇2

θln(θ̃n)u.

In the above θ̃n is equal to sθ⋆ + (1 – s)(θ⋆ + αnu) for some 0 < s < 1. From Proposition 6.2(i) we
have for large enough n, ∇θln(θ⋆) = OP(n1/2). This gives αn∇θln(θ⋆) = OP(αnn1/2) = OP(α2

nn),
due to Assumption 2 on an . From Proposition 6.2(ii), for large enough n, we have – 1

n∇
2
θln(θ̃) =

I(θ⋆)
(
1 + oP(1)

)
. Then, we get

D1n(u) =
1

(n – p)
∥u∥OP(α2

nn) –
1

2(n – p)
uTI(θ⋆)unα2

n
(
1 + oP(1)

)
. (14)

In the above, it is clear that the second term dominates the first uniformly for ∥u∥ = C with a
sufficiently large C. Recall that for all k ∈ A, θ⋆k ̸= 0 and for large enough n, |θ⋆k | > cλn for some
constant c > 0, since λn = o(1) due to Assumption 2. As αn = o(1), we can perform a second-order
Taylor expansion in D2n(u,λn) due to Assumption 1, and obtain the following inequality,

D2n(u,λn) =
∑

k∈A∩E

(
αnr ′λn

(
θ⋆k
)
uk +

α2
n
2

r ′′λn

(
θ⋆k
)
u2
k
(
1 + o(1)

))
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≤
√

|A ∪Ac |αnan∥u∥ +
α2

n
2

bn∥u∥2. (15)

From the assumption on the rates of decay of an and bn in Assumption 2, the above upper bound
can also be dominated by the second term of (14) by choosing a large enough C. Thus, from the
results in (14) and (15), we can conclude that for sufficiently large n, Vn(u) < 0, and that the
hypothesis in (13) holds.

To prove the result on the oracle property of the penalized estimator in Theorem 1(ii), we first
show the following lemma.

Lemma 6.3. Suppose that θn = [(θn
A)T, (θn

Ac
)T]T, is such that ∥θn – θ⋆∥ = OP(n–1/2) as

n → ∞. Then, for tuning parameter λn and penalty function rλn satisfying Assumption 1–3, we
have as n → ∞, with probability tending to one that

Ln
(
[(θAn )T, (θA

c

n )T]T
)

< Ln
(
[(θAn )T, 0T]T

)
,

where θ⋆ = [(θ⋆A)T, (θ⋆A
c
)T]T, with A containing the indices of all nonzero elements of θ⋆.

Proof. Consider,(
Ln
(
[(θAn )T, (θA

c

n )T]T
)

– Ln
(
[(θAn )T, 0T]T

))
=

1
(n – p)

(
ln(θn) – ln

(
[(θAn )T, 0T]T

))
–
(∑
k∈E

rλn

(
θn,k

)
–
∑

k∈E∩A
rλn

(
θn,k

))
.

By the second-order Taylor expansion, we have

ln(θn) – ln(θ⋆) =
(
θn – θ⋆

)T∇θln(θ⋆) +
1
2
(
θn – θ⋆

)T∇2
θln(θ̃n)

(
θn – θ⋆

)
,

ln
(
[(θAn )T, 0T]T

)
– ln(θ⋆) =

(
[(θA

n )T, 0T]T – θ⋆
)T∇θln(θ⋆)

+
1
2
(
[(θAn )T, 0T]T – θ⋆

)T∇2
θln(θ̃An )

(
[(θAn )T, 0T]T – θ⋆

)
.

In the above θ̃n is sθ⋆ + (1 – s)θn for some 0 < s < 1 and θ̃An is tθ⋆ + (1 – t)[(θAn )T, 0T]T for some
0 < t < 1. We know that θ⋆ = [(θ⋆A)T, 0T]T, which gives(

θn – θ⋆
)T∇θln(θ⋆) =

(
θA
n – θ⋆

A)T∇θA ln(θ⋆) +
(
θAc

n – θ⋆
Ac)T∇θA

c ln(θ⋆).

From Proposition 6.2(i) we have ∇θln(θ⋆) = OP(n1/2). Then,(
θn – θ⋆

)T∇θln(θ⋆) =
(
θA
n – θ⋆

A)T∇θA ln(θ⋆) + OP(n1/2)|θA
c

n |.

As n → ∞, θ̃n → θ⋆ a.s., then from Proposition 6.2(ii) we have –n–1∇2
θln(θ̃n) = I(θ⋆)(1 + oP(1)).

Furthermore, as n → ∞, θ̃An → θ⋆A a.s., we have –n–1∇2
θln(θ̃An ) = I11(θ⋆)(1 + oP(1)), where the

Fisher information matrix corresponding to θ⋆ = [(θ⋆A)T, (θ⋆A
c
)T]T, is written as

I(θ⋆) =
[
I11(θ⋆) I12(θ⋆)
I12(θ⋆) I22(θ⋆)

]
.
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Thus, for large enough n, we have

ln(θn) – ln
(
[(θAn )T, 0T]T

)
= OP(n1/2)|θAc

n | –
1
2
n
(
θn – θ⋆

)TI(θ⋆)
(
θn – θ⋆

)
(1 + oP(1))

+
1
2
n
(
θAn – θ⋆

A)TI11(θ⋆)
(
θAn – θ⋆

A)(1 + oP(1))

= OP(n1/2)|θAc

n | – n
((

θA
n – θ⋆

A)TI12(θ⋆)θA
c

n

+
1
2
(θA

c

n )TI22(θ⋆)θA
c

n

)
(1 + oP(1)).

Since ∥θAn – θ⋆A∥ = OP(n–1/2) and ∥θA
c

n ∥ = OP(n–1/2), for large enough n and some constants
C1, C2, C3 > 0, we get

ln(θn) – ln
(
[(θAn )T, 0T]T

)
≤ C1n1/2|θA

c

n | + nC2n–1/2|θA
c

n |(1 + oP(1)) ≤ n1/2C3
∑

k∈Ac

|θn,k |.(16)

Next, we notice that (∑
k∈E

rλn

(
θn,k

)
–
∑

k∈E∩A
rλn

(
θn,k

))
=

∑
k∈E∩Ac

rλn (θn,k ).

From (16), for large enough n, we have

Ln
(
[(θAn )T, (θA

c

n )T]T
)

– Ln
(
[(θAn )T, 0T]T

)
≤ n1/2

(n – p)
C3

∑
k∈Ac

|θn,k | –
1
n

∑
k∈E∩Ac

nrλn (θn,k ). (17)

As ∥θn – θ⋆∥ = OP(n–1/2), for the coefficients belonging to the zero-elements set Ac , we have
|θn,k | = OP(n–1/2). Then, for each k ∈ Ac , Assumption 3 is applicable on the penalty function
value rλn (θn,k ), which gives

lim inf
n→∞

nrλn (θn,k ) = lim inf
n→∞

√
n|θn,k |

√
nr ′λn

(θn,k ) = +∞ a.s..

Hence, as n → ∞, from (17) we deduce that

Ln
(
[(θAn )T, (θA

c

n )T]T
)

– Ln
(
[(θAn )T, 0T]T

)
< 0 a.s..

which proves the result.

Now, we provide the remainder of the proof. From Lemma 6.3, we know that for any
√

n–consistent

estimator θ̂n , the parameter vector
[
θ̂An
0

]
maximizes Ln(θ) with probability tending to one as

n → ∞, over any other choice θn =

[
θAn
θA

c
n

]
such that ∥θn – θ⋆∥ = OP(n–1/2). From Theorem 1, we

know that a
√

n-consistent maximizer θ̂n of Ln(θ) exists when λn and rλn satisfy Assumption 2.
Then, it must be true that P(θ̂A

c
n = 0) → 1 as n → ∞.

The result in Theorem 1 shows that we have a
√

n–consistent estimator if an = O(n–1/2), with
λn → 0. For scad and mcp penalty functions, it is then enough that λn → 0 as n → ∞, since then
an = 0. For the lasso penalty, we must have at least that λn = O(n–1/2) since an = λn ; and for
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the adalasso, we require
√

nλn = o(1). However, as is well-known, it is not possible to recover
the sparsity structure using the lasso penalty as we will then require that limn→∞

√
nλn = ∞,

to satisfy Assumption 3, which contradicts the earlier requirement on the tuning parameter decay
rate for the lasso penalty function. The sparsity structure can be recovered with the other three
penalty functions, since we can choose λn ∼ n–1/2–ψ for a 0 < ψ < γ/2, for the adaptive lasso,
and λn ∼ n–1/2 log n for the scad and mcp penalties.

If M is under-specified, the MPLE θ̂n converges to the minimizer of the Kullback-Leibler distance
between the densities of the under-specified and true models, a property shared by the MLE under
this misspecification (Douc and Moulines, 2012). On the other hand, in Theorem 2 we show that if M
is over-specified, the density function of the over-fitted MSVAR model based on MPLE consistently
estimates the density function of the true model, which is useful for prediction. In particular,
we show that the estimated predictive density of the over-fitted model based on MPLE consistently
estimates the h-step ahead predictive density of the true MSVAR model with M regimes, denoted by
f ⋆(yn+1:h |y1:n), and computed in Section 4 of the main manuscript. As a consequence of this result,
in practice when the true number of regimes is unknown, a conservative choice of M considering
the sample size n can guarantee a reliable estimate of the h-step ahead predictive density, and the
optimal predictor (see Section 4, main manuscript) in the sense of minimum mean squared prediction
error.

Theorem 2. Under Assumption 1–3, the estimated h-step ahead predictive density function
f̂M(yn+1:h |y1:n) for number of regimes M ≥ M, converges almost surely to the true h-step ahead
predictive density f ⋆(yn+1:h |y1:n) as n → ∞ where M is the true number of regimes in the model.

Proof. We provide the proof for the one-step estimated predictive density. The result for the h-step
estimated predictive density can be shown similarly.

We denote the generic intercept vector for VAR model by ν and the vectorized VAR coefficients
and covariance matrices as ai = vec(Ai ), i = 1, . . . , p and σ = vec(Σ). For number of regimes
M > M and n > p, the one-step ahead predictive density function is given as

fM(yn+1|y1:n) =
M∑

m=1
g
(
yn+1, y1:n ; ν(m), {a(m)

i }p
i=1,σ

(m))P(sn+1 = m|y1:n),

where

g
(
yn + 1, y1:n ; ν, {ai}

p
i=1,σ

)
:=

1√
(2π)d |Σ|

exp

(
–
1
2
(yn+1 – µ(y1:n , ν, {ai}

p
i=1))

T(Σ)–1

(yn+1 – µ(y1:n , ν, {ai}
p
i=1))

)
,

µ(y1:n , ν, {ai}
p
i=1) := ν + A1yn + . . .+ Apyn–p+1.

The estimated one-step ahead predictive density for number of regimes M is given as

f̂M(yn+1|y1:n) =
M∑

j=1
g
(
yn+1, y1:n ; ν̂(m), {â(m)

i }p
i=1, σ̂

(m))P̂(sn+1 = m|y1:n),

with P̂(sn+1 = m|y1:n) computed via forward and backward recursions and using the estimates of
the transition probability matrix for M number of regimes. The estimates of VAR coefficients and
covariance matrices are denoted by (ν̂(m), {â(m)

i }p
i=1) and σ̂(m) respectively. We can alternatively

write

f̂M(yn+1|y1:n) =
∫

g
(
yn+1, y1:n ; ν, {ai}

p
i=1,σ

)
dΦ̂M,n(ν, {ai}

p
i=1,σ), (18)
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with

Φ̂M,n(ν, {ai}
p
i=1,σ) =

M∑
m=1

P̂(sn+1 = m|y1:n)H(ν ≥ ν̂(m), {ai}
p
i=1 ≥ {â(m)

i }p
i=1,σ ≥ σ̂(m)),

where H(·) denotes the Heaviside step function. The true one-step ahead predictive density can be
then written as

f ⋆(yn+1|y1:n) =
∫

g
(
yn+1, y1:n ; ν, {ai}

p
i=1,σ

)
dΦ⋆

n(ν, {ai}
p
i=1,σ),

with

Φ⋆
n(ν, {ai}

p
i=1,σ) =

M∑
m=1

P⋆(sn+1 = m|y1:n)H(ν ≥ ν(m)⋆, {ai}
p
i=1 ≥ {a(m)⋆

i }
p
i=1,σ ≥ σ(m)⋆).

The estimated and true filtered probabilities are computed by fixing the initial state sp and initializ-
ing with true conditional state probabilities P⋆(sp = m|y1:p) respectively. The effect of initial distri-
bution dissipates geometrically fast in number of observations n as shown in Douc et al. (2004, Corol-
lary 1). Next, we define the following distance between the probability measures Φ⋆

n(ν, {ai}
p
i=1,σ)

and ΦM,n(ν, {ai}
p
i=1,σ) :

D(ΦM,n ,Φ⋆
n) (19)

=
∫ ∫ ∣∣ΦM,n(ν, {ai}

p
i=1,σ) – Φ⋆

n(ν, {ai}
p
i=1,σ)

∣∣e–(|ν|+
∑p

i=1 |ai |+|σ|)dν da1 . . . dap dσ dP⋆(y1:n).

The above distance metrizes the space of probability measures on the space of VAR model parameter
(ν, {ai}

p
i=1,σ) ⊂ Θ. We can consider any other distance between probability measures on the space

of VAR model parameter (ν, {ai}
p
i=1,σ). For an arbitrary δ > 0, we consider a family

Hn(δ) = {ΦM,n : D(ΦM,n ,Φ⋆
n) > δ},

of probability measures such that each element in it is at least a δ distance away from Φ⋆
n . Then,

clearly Φ⋆
n /∈ Hn(δ), and

E⋆
[
log

(
fM(yn+1|y1:n)
f ⋆(yn+1|y1:n)

)]
< 0.

Similarly, we also have for t = p + 1, . . . ,n

E⋆
[
log

(
fM(yt | = y1:t–1)

f ⋆(yt |y1:t–1)

)]
< 0,

where the conditional densities fM(yt |y1:t–1) and f ⋆(yt |y1:t–1) have their own representation similar
to fM(yn+1|y1:n) and f ⋆(yn+1|y1:n) but with their own probability measures ΦM,t ∈ Ht (δ) and Φ⋆

t ,
respectively. From the stationarity of the process and ergodic theorem,we can also conclude that

1
n – p

n∑
t=p+1

log

(
fM(yt |y1:t–1)
f ⋆(yt |y1:t–1)

)
=

1
n – p

log

(
fM(yp+1, . . . , yn |y1:p)
f ⋆(yp+1, . . . , yn |y1:p)

)
< –ϵ(δ) a.s., (20)
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for some ϵ(δ) > 0 and n large enough. Define γ := (ν, {ai}
p
i=1,σ) as the VAR model parameter

vector. Then, the joint probability density under the assumption of M > M regimes and true joint
probability density can be expressed as follows:

fM(yp+1, . . . , yn |y1:p) =
∫ n∏

t=p+1
g
(
yt , y1:t–1;γt

)
dΦjoint,M(γp+1:n),

f ⋆(yp+1, . . . , yn |y1:p) =
∫ n∏

t=p+1
g
(
yt , y1:t–1;γt

)
dΦ⋆

joint(γp+1:n),

where γp+1:n = (γp+1, . . . ,γn), with γt , t = p + 1, . . . ,n, representing the choice of VAR model
parameter at different instances. Furthermore,

g
(
yt , y1:t–1;γ

)
:=

1√
(2π)d |Σ|

exp

(
–
1
2
(yt – µ(y1:t–1, ν, {ai}

p
i=1))

T(Σ)–1(yt – µ(y1:t–1, ν, {ai}
p
i=1))

)
,

µ(y1:t–1, ν, {ai}
p
i=1) = ν + A1yt–1 + . . .+ Apyt–p ,

and

Φjoint,M(γp+1:n) =
M∑

jp+1=1
. . .

M∑
jn=1

P(sp+1 = jp+1|y1:p)
n∏

t=p+2
α′jt–1,jt

n∏
t=p+1

H(γt ≥ γ′jt ),

Φ⋆
joint(γp+1:n) =

M∑
jp+1=1

. . .
M∑

jn=1
P⋆(sp+1 = jp+1|y1:p)

n∏
t=p+2

α⋆jt–1,jt

n∏
t=p+1

H(γt ≥ γ⋆jt ).

For the joint distribution Φjoint,M(γp+1:n) we can similarly define a family

Hjoint(δ) := {Φjoint,M : D(Φjoint,M,Φ⋆
joint) > δ},

based on its distance from the joint distribution Φ⋆
joint(γp+1:n) with the distance being defined

analogously as in (19) with inner integral being with respect to γp+1:n and the outside probability
measure corresponding to P⋆(y1:p).

From the result in (20) for any Φjoint,M ∈ Hjoint(δ), and the fact that penalty terms are non-
negative with order o(1), we get

sup
Hjoint(δ)

 1
(n – p)

log

(
fM(yp+1, . . . , yn |y1:p)
f ⋆(yp+1, . . . , yn |y1:p)

)
–
( ∑
k∈EM

Rλn

(
θTk
)

–
∑
k∈E

Rλn

(
θ⋆k
)) < –ϵ(δ) a.s..

Hence, the joint probability distribution corresponding to the penalized maximum-likelihood esti-
mate in coefficient space ΘM cannot be an element of Hjoint(δ) almost surely as n → ∞. This is
true for any δ > 0, thus we must have for the joint distribution corresponding to the penalized
maximum-likelihood estimate in coefficient space ΘM : Φ̂joint,M that D(Φ̂joint,M,Φ⋆

joint) → 0 as
n → ∞. In other words, we have that Φ̂joint,M converges weakly to Φ⋆

joint as n → ∞. Then we must
also have that Φ̂M,n converges weakly to the true distribution Φ⋆

n as n → ∞. As the function g in
(18) is bounded and continuous for the choice of parameter θ in the compact parameter space Θ,
we have that f̂M(yn+1|y1:n) converges almost surely to f ⋆(yn+1|y1:n) as n → ∞.
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A3 Complementary numerical results

Recall the scenarios S1 and S2 for sparse covariance and precision matrices, respectively, along with
sparse AR matrices. We use MLE* to refer to the MLE obtained by incorporating the knowledge
of the true zero parameters of an MSVAR model, which we denote it by θ̃ in the main paper. We
set M = 2, p = 1, and consider dimensions d = 20 with sample sizes n ∈ {200, 300, 400}, d = 40
with n ∈ {300, 400, 500}, and d = 100 with n ∈ {600, 700, 800}. For these values of (d , M, p), the
parameter vector θ has dimensions K = M

(
d +pd2+d(d +1)/2

)
+M(M–1) = 1262, 4922 and 30302,

respectively. The corresponding dimensions of the parameter vector of the true data-generating
MSVAR models are 104, 202 and 504, respectively. The simulation result for each d should be
analyzed on its own, since the parameter configurations of the underlying models corresponding to
d = 20, 40, 100, are different; see Section 5 of the main manuscript on “Simulation design”.

Sparsity scenario S1. Figure 1 shows the relative estimation error (REE) and true positive rate
(TPR) for d = 20. The results for dimensions d = 40, 100, are presented in the main manuscript.
In Figure 1, we observe that in terms of the overall REE for the smallest sample size, Scad and
MCP perform better compared to the other two penalty functions. On the other hand, adalasso
and mcp outperform when n = 300, 400, while also being comparable to the MLE* (median REE at
most 1.2). In terms of TPR, the performance of the method based on all four penalties is reasonable.

(a)
AR coefficients Covariance matrices Overall
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(b)
AR coefficients Covariance matrices Overall
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1.00
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Sample size n: 200 300 400
Figure 1: (a) Relative estimation error (REE) and (b) true positive rate (TPR, nonzero parameter detection, bottom)
based on 50 random samples for data dimension d = 20, parameter dimension K = 1262, and sparsity scenario S1.

For d = 20, we also investigate the performance of the MPLE for a wider range of sample sizes
n ∈ {120, 200, 400, 800, 2000, 5000, 10000}. Figure 2 shows the estimation error (EE) and the TPR
values. For the sample sizes n = 120, 200, the results show that the EE are relatively large and the
TPR are relatively low. This is expected as these sample sizes are close to the number of parameters
in the true data-generating MSVAR model, which is 104. On the other hand, the results show that
as the sample size increases to 400 and beyond the standard deviation of the estimates decreases,
which is expected as per our result in Theorem 1-(i) on the consistency of the MPLE. In addition,
the TPR reaches the value 1.0 as n increases, which confirms the sparsity recovery property of the
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Figure 2: (a) Overall estimation error (EE) and (b) true positive rate (TPR) for data dimension d = 20,
parameter dimension K = 1262, and sparsity scenario S1.
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MPLE in Theorem 1-(ii). We also performed simulations for M = 2, p = 1 and d = 40 (K = 4922)
with a minimum sample size n = 220 (the number of parameters in the true data-generating MSVAR
model is 202), and we observed the same behaviour of the MPLE as for d = 20.

Sparsity scenario S2. Relative estimation errors (REE) with respect to the MLE* for this scenario
are presented in Figure 3 for d = 20, 40, 100. Different from scenario S1, here we observe that the
MPLE attains a lower estimation error compared to the MLE* θ̃, the reason being as follows. To
obtain θ̃ for the case of sparse precision matrices Ω(m), we first compute the regime-specific MLE of
Σ(m) and we then set the entries of the MLE of (Σ(m))–1 to zero, corresponding to the zero entries
of the true precision matrices. This estimation procedure does not directly use the knowledge of the
true zero parameters in the precision matrices resulting in REE < 1, that is, a higher estimation
error (EE) for θ̃ compared to the proposed penalized estimators. From the results we can see that
regarding the AR matrices, the adalasso outperforms the other penalties, followed by scad, mcp
and lasso. About the precision matrices and also the overall REE, the four penalties perform
similar to each other.
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Figure 3: Relative estimation error (REE) based on 50 random samples for sparsity scenario S2: (a) d = 20,K =
1262 (b) d = 40, K = 4922 (c) d = 100, K = 30302, where d and K are the data and parameter dimensions, respectively.

Figure 4 shows the boxplots of the TPR. We can see that the method has a reasonable perfor-
mance, above 0.85 overall. As in scenario S1, we observe mean true negative rate (TNR) above 0.90
for all cases (omitted).
Similar to scenario S1, for d = 20, we also investigate the performance of the MPLE for a
wider range of sample sizes n ∈ {120, 200, 400, 800, 2000, 5000, 10000}, and for d = 40 with n ∈
{220, 300, 400, 800, 2000, 5000, 10000}. The performance of the method in terms of the overall EE
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and TPR improves as the sample size increases (the results omitted), which is expected as per the
result of Theorem 1.
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Figure 4: True positive rate (TPR, nonzero parameter detection) based on 50 random samples for scenario
S2: (a) d = 20, K = 1262 (b) d = 40, K = 4922 (c) d = 100, K = 30302, where d and K are the data and
parameter dimensions, respectively.
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Diagonal covariance matrices. In our simulation experiments considered in the main manuscript,
we considered non-structured sparse covariance matrices. Here, we present the results for an exper-
iment for d = 20, M = 2, p = 1 and diagonal true covariance matrices Σ(m). If we incorporate the
knowledge of the true covariance matrices being diagonal, the number of parameters (dimension of
θ) to be estimated by the MPLE reduces from K = 1262 to K = 882.

In Figure 5, corresponding to K = 1262, we observe that the median REE across all the four
penalties is less than 1.6, with the adalasso and lasso performing closer to the MLE* compared
to the other two penalties, as also shown by the overall EE. In terms of TPR and TNR, we observe
that the MPLE is able to recover both the the true nonzero and zero (off-diagonal) entries of the
covariance matrices, with median rates above 0.80 and 0.90, respectively.

In Figure 6, corresponding to K = 882, we observe that, by incorporating the knowledge of the
covariance matrices being diagonal, the medians of all the performance measures remain roughly the
same as in Figure 5. The main differences are that (i) the standard deviations of the REE and EE
are lower in Figure 6 for the smallest sample size, and (ii) the TNR corresponding to the covariance
matrices is now 1.0. This shows that the performance of our method is at par with the performance
of the estimator that uses the knowledge of the true sparsity structure. In simulation designs with
covariance matrices being multiples of the identity matrix, as well as for d = 40, we observe the
same phenomenon (results omitted).
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Figure 5: (a) Relative estimation error (REE), (b) overall estimation error (EE), (c) true positive rate
(TPR) and (d) true negative rate (TNR) for model with diagonal covariance matrices and data dimension
d = 20 (parameter dimension K = 1262). MLE* represents maximum likelihood estimation knowing the
location of the zero parameters.
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Figure 6: (a) Relative estimation error (REE), (b) overall estimation error (EE), (c) true positive rate
(TPR) and (d) true negative rate (TNR) for model with diagonal covariance matrices and data dimension
d = 20, using the knowledge of the true covariance matrices being diagonal (parameter dimension K = 882).
MLE* represents maximum likelihood estimation knowing the location of the zero parameters.

26



A4 Model fitting results for the macroeconomic dataset case study

In the case study based on the Canadian macroeconomic dataset as presented in Section 6 of the
main manuscript, we fit MSVAR models with M = 1, 2, 3, 4, and p = 1, 2, 3, and for each penalty
and sparsity scenario S1 (sparse covariance matrices) and scenario S2 (sparse precision matrices).
We compute BIC and MDL to choose the final model. From Table 1 below, we conclude that: (i)
scenario S1 yields the lowest values of BIC in all cases, and of MDL in almost all cases, compared
to S2; (ii) under S1 and for any penalty, the number of regimes M = 3 is consistently selected
based on BIC and MDL; (iii) under S1 and for M = 3, the adalasso and mcp provide the lowest
values of both BIC and MDL. The change in BIC and MDL when varying M from 3 to 4 is not
significant. Moreover, the optimization problems associated to M ≥ 4 are obviously more sensitive
to their initialization, and more prone to bad local optima.

We employ our proposed AR-order selection method based on the hierarchical group-lasso
penalized estimation (Section A1.6), and obtain p̂ = 1 for the estimated M̂ = 3. Finally, regarding
the choice of the penalty function, since we are also interested in the predictive performance of the
model, we choose between adalasso and mcp by comparing the value of their predictive densities
obtained with M̂ = 3 and p̂ = 1, evaluated on out-of-sample observations from the last 6 months in
the dataset. The adalasso penalty yields the highest value of the log-predictive density (-162.4)
compared to lasso (-180.2), scad (-218.4) and mcp (-220.5). Thus, using adalasso , we obtain
the final model with M̂ = 3, p̂ = 1.
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lasso M = 1 M = 2 M = 3 M = 4
BIC MDL BIC MDL BIC MDL BIC MDL

S1 p = 1 12224.3 – 11319.8 11219.4 11273.4 11096.9 11356.2 11170.5
p = 2 12095.8 – 11246.8 11158.9 11103.9 10959.7 11174.1 10960.8
p = 3 12049.2 – 11341.5 11257.3 11182.6 10650.2 11218.1 11034.4

S2 p = 1 12285.7 – 11938.6 11824.6 12123.4 11744.9 12071.9 11796.1
p = 2 12161.2 – 11822.4 11697.3 12507.9 11968.1 12149.1 11766.7
p = 3 12119.9 – 12061.6 11992.6 11778.0 11632.3 11958.6 11691.6

alasso M = 1 M = 2 M = 3 M = 4
BIC MDL BIC MDL BIC MDL BIC MDL

S1 p = 1 12094.5 – 11051.7 10974.2 11009.9 10861.7 11095.1 10769.3
p = 2 11931.5 – 10912.0 10833.0 10893.1 10758.6 10957.2 10778.9
p = 3 11872.9 – 10937.1 10848.1 10976.1 10828.9 10945.6 10739.6

S2 p = 1 12246.8 – 12617.7 12024.7 12125.2 11577.5 12090.3 11580.3
p = 2 12111.0 – 11970.6 11826.1 12311.5 11941.4 12618.7 11765.5
p = 3 12045.9 – 11622.8 11507.8 11551.3 11377.3 11787.7 11484.0

scad M = 1 M = 2 M = 3 M = 4
BIC MDL BIC MDL BIC MDL BIC MDL

S1 p = 1 12187.4 – 11137.5 11059.7 11105.5 10917.0 11115.4 10854.5
p = 2 12053.8 – 11043.6 10968.5 10943.6 10788.9 11014.4 10783.0
p = 3 12019.9 – 11186.0 11070.8 11051.9 10914.7 11110.8 10896.7

S2 p = 1 12322.3 – 12676.2 12305.7 11761.1 11539.9 12598.5 11710.1
p = 2 12182.4 – 11948.9 11817.0 12169.0 11731.6 11997.9 11845.1
p = 3 12118.2 – 12671.9 12306.7 12394.5 10049.0 12862.4 12069.9

mcp M = 1 M = 2 M = 3 M = 4
BIC MDL BIC MDL BIC MDL BIC MDL

S1 p = 1 12074.3 – 11016.8 10953.2 10987.6 10754.9 11387.9 10976.8
p = 2 11897.1 – 10885.6 10809.5 10840.4 10644.4 10917.7 10551.2
p = 3 11863.4 – 10905.2 10841.1 10757.4 10600.7 10982.2 10630.4

S2 p = 1 12239.9 – 12166.7 11903.8 11864.8 11486.9 12409.5 11759.5
p = 2 12063.3 – 11927.1 11691.2 12205.6 11746.1 12603.9 12006.7
p = 3 12036.0 – 12572.1 10385.3 12412.1 11786.2 13314.0 11959.3

Table 1: BIC and MDL values based on the macroeconomic dataset of Section 6 of the main manuscript, for
M = 1, 2, 3, 4, p = 1, 2, 3, sparsity scenarios S1 and S2, and all the penalties considered. Minima for fixed p
and criterion are highlighted in boldface.
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