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Abstract

We consider sparse Markov regime-switching vector autoregressive (MSVAR) mod-
els in which the regimes are governed by a latent homogeneous Markov chain. In
practice, even for moderate values of the number of Markovian regimes and data di-
mension, the associated MSVAR model has a large parameter dimension compared to
a typical sample size. We provide a unified penalized conditional likelihood approach
for estimating sparse MSVAR models. We show that our proposed estimators are
consistent and recover the sparse structure of the model. We also show that, when
the number of regimes is correctly or over-specified, our method provides consistent
estimation of the predictive density. We develop an efficient implementation of the
method based on a modified expectation-maximization (EM) algorithm. We discuss
strategies for estimation of the number of regimes. We evaluate finite-sample perfor-
mance of the method via simulations, and further demonstrate its utility by analyzing
a real dataset. Supplementary materials for this paper are available online.
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1 Introduction

Markov regime-switching vector auto-regressive (MSVAR) models are ubiquitous in mod-

elling heterogeneous and complex relationships between the variables of interest in multi-

variate time series analysis (Krolzig, 1997). The two stochastic components of an MSVAR

are the observable time series vectorYt ∈ Rd, and the latent Markov chain St ∈ {1, . . . ,M},

for some finite M ∈ N. The process St determines the VAR regime under which the condi-

tional distribution of Yt|(St = st) evolves as a function of lagged Yt−j, j = 1, . . . , p ∈ N. In

this work, we focus on Gaussian MSVARs where the noise component in each VAR regime

follows a zero-mean, d-dimensional Gaussian distribution. These models are applicable in a

wide range of disciplines. For example, in macroeconomic time series such as manufactur-

ing activities, consumer price indices, and housing and asset prices (Yt), we typically see

the effect of business cycles and the volatility clustering effect, which can be captured by

St (Hamilton, 1988; Kim et al., 1998; Ang and Timmermann, 2012). In time series data re-

lated to natural phenomena such as wind power generation (Yt) across geographic regions,

there are periods of high and low measurements that depend on wind speed (St) (Pinson

and Madsen, 2012); similarly, there are periods of high and low temperature measurements

that depend on annual meteorological cycles (St) corresponding to different seasons with

warm and cold months (Monbet and Ailliot, 2017).

Maximum likelihood estimation (MLE) is the most common frequentist method of in-

ference in MSVAR models. However, a limitation often encountered with MLE is the

potentially large number of parameters to be estimated. In an MSVAR model with M

regimes and autoregressive order p, the total number of parameters is K = M
(
d + pd2 +
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d(d+1)/2
)
+M(M−1), which can be large even for moderate values of (d, p,M), compared

to a typical sample size. For instance, in our case study each observation is 10-dimensional,

and for an MSVAR model with AR-order p = 1 and the number of regimes M ranging from

1 to 5, there are 165 ≤ K ≤ 845 parameters to estimate based on a sample of size 481.

Therefore, besides an obfuscated model interpretation, it can also be difficult to perform

stable MLE in large-dimensional parameter spaces. It thus becomes essential to consider

strategies that enable more stable and interpretable parameter estimation. With this mo-

tivation, we perform parameter estimation using regularization techniques that have been

successful in both high-dimensional VAR and covariance estimation problems (Basu and

Matteson, 2021; Lam, 2020). These techniques arise from the assumption that many of

the model parameters are null. In the context of MSVAR models, we assume that both

VAR coefficient matrices and the noise covariance–or precision–matrices are sparse, that is,

many of their entries are zero. This also results in more meaningful model interpretations.

There has been a huge surge in research on estimation in sparse VAR models (Basu and

Michailidis, 2015; Nicholson et al., 2020, and references therein), and sparse covariance and

precision matrix estimation (Friedman et al., 2008; Shojaie and Michailidis, 2010; Bien and

Tibshirani, 2011; Lam, 2020, and references therein). This has been led by the development

of penalized methods such as the lasso (Tibshirani, 1996), adaptive lasso (Zou, 2006),

scad (Fan and Li, 2001) and mcp (Zhang, 2010). However, to the best of our knowledge,

there are only a few works on regularized estimation for MSVARs. In the context of hidden

Markov models (HMMs)–which are MSVARs with AR-order p = 0–Städler and Mukherjee

(2013) studied the graphical lasso algorithm for estimation of sparse precision matrices in
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high-dimensions. Fiecas et al. (2017) proposed a shrinkage, rather than sparsity, approach

to obtain stable covariance matrix estimates in high-dimensional HMMs. To simulate

temperature data using a sparse MSVAR with a non-homogeneous Markov chain, Monbet

and Ailliot (2017) performed simultaneous VAR coefficient and precision matrix estimation.

In this work, we focus on a general sparse estimation framework for MSVAR models,

which is not available in the reviewed literature. We propose a penalized conditional

likelihood approach that allows for sparse estimation of the regime-specific VAR coefficients

and covariance/precision matrices. We condition on the initial state of the Markov chain St,

which avoids the estimation of its initial distribution and thus simplifies the problem. We

show that, irrespective of the initial state conditioning, our method consistently recovers

the sparse MSVAR model. We also provide an estimator for the h-step-ahead predictive

density, and show that as long as the true number of AR regimes is not under-specified,

this estimator is consistent for the true predictive density. All of our theoretical results are

provided in the Supplement, Section A2. We implement the proposed method by using a

modified EM algorithm, combined with a generalized gradient descent method in the M-

step. We investigate strategies for estimation of the number of AR regimes. We study finite-

sample performance of the proposed methods via simulations, and further demonstrate their

utility by analyzing a Canadian macroeconomic dataset.

Section 2 presents sparse MSVAR models. Section 3 describes the proposed estimation

methods and their numerical implementation. We discuss the computation of predictive

densities in Section 4. Section 5 presents a simulation study, and Section 6 contains a case

study on a Canadian macroeconomic dataset to demonstrate the usage of our methodology.

4



2 Sparse Markov regime-switching vector auto-regressives

Let {St ∈ {1, . . . ,M}, t = 1, 2, . . .} be a latent homogeneous Markov chain for some finite

M ∈ N. We denote its M ×M transition probability matrix by P with the (i, j)-th entry

P(St = j|St−1 = i, St−2 = st−2, . . . , S1 = s1) = P(St = j|St−1 = i) = αij,

which is the probability of entering state j at time t from state i at time t − 1, and∑M
j=1 αij = 1, i = 1, . . . ,M . Further, let {Yt ∈ Rd, t = 1, 2, . . .} be an observable time

series with observed values {yt, t = 1, 2, . . .}. For any t > p, we assume that conditional

on Y1:t−1 = y1:t−1 and Sp:n = sp:n, the distribution of Yt only depends on the lagged

Yt−p:t−1 = yt−p:t−1 and St = st. In a Gaussian MSVAR with M regimes and AR-order

p, the conditional distribution of Yt given St = m and Yt−j = yt−j, j = 1, . . . , p, is a

state-dependent multivariate Gaussian with covariance matrix Σ(m) = (σ
(m)
ij ) ∈ Rd×d and

time-dependent mean vector

µ
(m)
t := ν(m) +A

(m)
1 yt−1 + . . .+A(m)

p yt−p, (1)

where ν(m) = (ν
(m)
1 , . . . , ν

(m)
d )T ∈ Rd, and A

(m)
l = (a

(m)
l,ij ) ∈ Rd×d, l = 1, . . . , p, are the AR

coefficient matrices. In simple terms, the behaviour of Yt within each regime–determined

by the latent process St–over time is modeled by a Gaussian VAR with AR-order p.

The parameters of interest are the transition probability matrix P , the AR inter-

cepts ν(1:M) := vec([ν(1), . . . ,ν(M)]), the AR coefficients A(1:M) := vec([A(1), . . . ,A(M)]),

with A(m) := vec([A
(m)
1 , . . . ,A(m)

p ]), m = 1, . . . ,M , the covariance matrices Σ(1:M) :=

vec([Σ(1), . . . ,Σ(M)]), and the precision matrices Ω(1:M) := vec([Ω(1), . . . ,Ω(M)]), where

Ω(m) = (Σ(m))−1 = (ω
(m)
ij ). Let θ ∈ Θ ⊆ RK be the vector of all parameters with
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K = M
(
d + pd2 + d(d + 1)/2

)
+ M(M − 1). In our estimation procedure, we directly

estimate either Σ(m) or Ω(m), and the parameter θ includes either Σ(1:M) or Ω(1:M).

Conditional likelihood: Let y1:n := {y1, . . . ,yn} be observations from a Gaussian

MSVAR model with M regimes and AR-order p. We consider the joint conditional density

of Yp+1:n given (y1:p, Sp = sp). By the total probability rule, we have

fθ(yp+1:n|y1:p, sp) =
M∑

sn=1

. . .

M∑
sp+1=1

f(yp+1:n|y1:p, Sp:n = sp:n)P(Sp+1:n = sp+1:n|y1:p, sp). (2)

By the homogeneity of St, conditional independence ofYt’s, and the Gaussianity, we obtain

P(Sp+1:n = sp+1:n|y1:p, Sp = sp) = P(Sp+1:n = sp+1:n|Sp = sp) =
n∏

t=p+1

αst−1,st ,

f(yp+1:n|y1:p, Sp:n = sp:n) =
n∏

t=p+1

f(yt|y1:t−1, Sp:n = sp:n) =
n∏

t=p+1

f(yt|yt−p:t−1, St = st)

=
n∏

t=p+1

ϕ
(
yt;µ

(st)
t ,Σ(st)

)
,

where ϕ(·;µ,Σ) is the d-dimensional Gaussian density. Therefore, the density (2) becomes

fθ
(
yp+1:n|y1:p, sp

)
=

M∑
sn=1

. . .
M∑

sp+1=1

( n∏
t=p+1

αst−1,st

)( n∏
t=p+1

ϕ
(
yt;µ

(st)
t ,Σ(st)

))
,

where µ
(st)
t is given in (1). The conditioning on y1:p is standard in time series when fitting

AR-type models. We also condition on Sp = sp to avoid specification of the initial distri-

bution of St which is an intricate issue in itself. The effect of conditioning on Sp dissipates

asymptotically (Douc et al., 2004). Thus, for any fixed sp, the conditional log-likelihood is

ln(θ; sp) := log
(
fθ
(
yp+1:n|y1:p, sp

))
. (3)

One could obtain the (conditional) MLE of θ by maximizing (3) with respect to θ. However,

as discussed in the introduction, even for moderate values of (d, p,M), the parameter θ
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has a large dimension which can result in an unstable estimation. Hence, to attain a

more stable and meaningful estimation of θ, we assume that the data-generating model is

sparse so that the number of parameters to estimate is much less than K. We develop an

estimation framework based on penalization of the conditional likelihood (3) in Section 3.

Sparsity: Different sparsity structures on the AR coefficients {A(m)
l ,m = 1, . . . ,M, l =

1, . . . , p} can be assumed for specific applications, for example, those in Nicholson et al.

(2020). For generality, we do not assume any specific sparsity structure. Nonetheless,

our method can be adapted to obtain structured sparse AR coefficients’ estimates by an

appropriate modification of the penalty function in Section 3.

Estimation of the covariance Σ(m) or precision Ω(m) matrices when the dimension d is

large is even more challenging, as their MLE estimates can be particularly unstable. To

circumvent this, one could either assume a sparse structure on these matrices, or use a

shrinkage-based approach to estimate them (Fiecas et al., 2017). We focus on the former

approach, and assume that the aforementioned matrices have many off-diagonal zero en-

tries. The sparsity assumption on covariance or precision matrices is application-dependent

(Friedman et al., 2008; Bien and Tibshirani, 2011), and we study both scenarios separately.

Figure 5 illustrates an example of a sparse 3-regime MSVAR model for macroeconomic

variables and the estimated sparse MSVAR parameters and regimes (Section 6).

3 Maximum penalized likelihood estimation

We estimate θ by penalizing the conditional log-likelihood in (3) using an appropriate

penalty function. This results in more stable parameter estimates. Specifically, we obtain
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the maximum penalized conditional likelihood estimate (MPLE) of θ as

θ̂n ∈ argmax

{
Ln(θ; sp) :=

1
n−p

ln(θ; sp)−R
(
θ;λ1, λ2

)}
, (4)

with R
(
θ;λ1, λ2

)
:=

M∑
m=1

p∑
l=1

d∑
i,j=1

rλ1

(
a
(m)
l,ij

)
+

M∑
m=1

d∑
i,j=1
j ̸=i

rλ2

(
γ
(m)
ij

)
,

where a
(m)
l,ij are the AR coefficients, and γ

(m)
ij correspond to either σ

(m)
ij or ω

(m)
ij . The rλ

is a penalty function with tuning parameter λ > 0 that determines the severity of the

penalty and consequently the level of sparsity of θ̂n. In our numerical studies, we use the

well-known penalties lasso, adaptive lasso (adalasso), mcp and scad, which are given

in the Supplement, Section A1.1. General assumptions on the choice of rλ are given in the

Supplement, Section A2. By design, many entries of θ̂n corresponding to Â
(1:M)

and Σ̂
(1:M)

or Ω̂
(1:M)

are zero, resulting in an estimated sparse MSVAR. Theorem 1 (Supplement,

Section A2) states that under the correct specification of M and appropriate choices of (rλ,

λ), there exists a local maximizer θ̂n of the penalized conditional likelihood Ln(θ; sp) that

is a consistent and sparse estimator of the true parameter θ⋆. As there is no closed-form

solution to the optimization in (4), we provide a numerical algorithm to approximate θ̂n.

3.1 Modified EM algorithm

The EM algorithm is commonly used to perform MLE in a wide range of latent variable

models, including MSVAR (Krolzig, 1997). The main advantage of this algorithm compared

to a direct gradient ascent method for maximizing Ln(θ; sp) is its ease of implementation

in the presence of the latent regime-governing St. Nevertheless, we use gradient ascent

method in the maximization (M-) step of the EM algorithm for obtaining the estimates

of AR coefficient and covariance/precision matrices. We adapt the EM algorithm to our
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penalization method by first introducing a so-called penalized complete-data likelihood.

For each St, we introduce a vector ξt := (ξt1, . . . , ξtM)T, where ξti = 1{St=i} represents

the membership of yt to regime i, so that
∑M

i=1 ξti = 1. We denote the complete data as

{(yt, ξt), t = p+ 1, . . . , n}, and the penalized complete conditional log-likelihood is

Lc
n(θ; sp) :=

M∑
i,j=1

n∑
t=p+1

ξ(t−1)iξtj logαij

n− p
+

M∑
i=1

n∑
t=p+1

ξti log ϕ
(
yt;µ

(i)
t ,Σ(i)

)
n− p

−R
(
θ;λ1, λ2

)
.

Clearly, the function Lc
n cannot be used directly to estimate θ since ξt are non-observable.

Instead, at the (k + 1)-th iteration, the algorithm proceeds in two steps as follows.

E-step: It computes the conditional expectation of Lc
n with respect to ξt given y1:n and

the current update θ(k). This results in

Q(θ;θ(k), sp) := E(Lc
n|y1:n,θ

(k), sp) =
1

n− p

M∑
i,j=1

n∑
t=p+1

ζ
(k)
t,ij logαij

− 1

n− p

M∑
i=1

n∑
t=p+1

ζ
(k)
ti

(
log |Σ(i)|+ 1

2
(yt − µ

(i)
t )TΩ(i)(yt − µ

(i)
t )

)
−R

(
θ;λ1, λ2

)
,

where, for t = p+ 1, . . . , n and i, j = 1 . . . ,M , the weights

ζ
(k)
t,ij = P(ξ(t−1)i = 1, ξtj = 1|y1:n,θ

(k), sp), ζ
(k)
ti = P(ξti = 1|y1:n,θ

(k), sp), (5)

are computed using a recursive forward-backward procedure as follows.

We define the vectors ηt :=
(
ϕ
(
yt;µ

(1)
t ;Σ(1)), . . . , ϕ

(
yt;µ

(M)
t ;Σ(M))

)T
and ξ̂t|τ := E(ξt|y1:τ ) =(

P(ξt1 = 1|y1:τ ), . . . ,P(ξtM = 1|y1:τ )
)T
, for p ≤ τ ≤ t and t ≥ p+ 1. We first compute ξ̂t|t

(forward recursion) and use them to obtain ξ̂t|n (backward recursion). By Bayes’ rule,

P(ξtm = 1|y1:t) = P(ξtm = 1|yt,y1:t−1) =
P(yt|ξtm = 1,y1:t−1)P(ξtm = 1|y1:t−1)

P(yt|y1:t−1)
. (6)
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The first term in the numerator of (6) is them-th entry of ηt, m = 1, . . . ,M . For the second

term in the numerator, using the total probability rule and the homogeneity assumption,

P(ξtm = 1|y1:t−1) =
M∑
i=1

P(ξtm = 1|ξ(t−1)i = 1,y1:t−1)P(ξ(t−1)i = 1|y1:t−1)

=
M∑
i=1

αimP(ξ(t−1)i = 1|y1:t−1), m = 1, . . . ,M (7)

or, in its vector form, ξ̂t|t−1 = P Tξ̂t−1|t−1. For the denominator in (6), we thus have

P(yt|y1:t−1) =
M∑

m=1

P(yt|ξ(t−1)m = 1,y1:t−1)P(ξ(t−1)m = 1|y1:t−1)

= ηT
t P

Tξ̂t−1|t−1 = ηT
t ξ̂t|t−1. (8)

Using the definition of ηt, (7) and (8), we then compute (6). Next, we compute the elements

of ξ̂t|n as follows. By Bayes’ rule and the model assumptions, for m = 1, . . . ,M ,

P(ξtm = 1|y1:n) =
M∑
i=1

P(ξtm = 1, ξ(t+1)i = 1|y1:n)

=
M∑
i=1

αmi P(ξtm = 1|y1:t)P(ξ(t+1)i = 1|y1:n)

P(ξ(t+1)i = 1|y1:t)
, (9)

which, as shown in Section A1.2 of the Supplement, uses that

P(ξtm = 1, ξ(t+1)i = 1|y1:n) =
P(ξ(t+1)i = 1|ξtm = 1)P(ξtm = 1|y1:t)P(ξ(t+1)i = 1|y1:n)

P(ξ(t+1)i = 1|y1:t)
. (10)

Letting ⊙ and ⊘ be the element-wise vector product and division, respectively, we write

(6) and (9) in their vector forms,

• Forward recursion (filtering): for t = p+ 1, . . . , n,

ξ̂t|t =
ηt ⊙ ξ̂t|t−1

1T
M

(
ηt ⊙ ξ̂t|t−1

) =
ηt ⊙ P (k)ξ̂t−1|t−1

1T
M

(
ηt ⊙ P (k)ξ̂t−1|t−1

) . (11)
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• Backward recursion (smoothing): for t = n− 1, . . . , p+ 1,

ξ̂t|n =
[
P (k)T

(
ξ̂t+1|n ⊘ ξ̂t+1|t

)]
⊙ ξ̂t|t. (12)

Finally, we set ζ
(k)
ti = P(ξti = 1|y1:n,θ

(k), sp) in (5) as the i-th entry of the vector ξ̂t|n, for

i = 1, . . . ,M . The joint probabilities ζ
(k)
t,ij = P(ξ(t−1)i = 1, ξtj = 1|y1:n,θ

(k), sp) in (5), for

i, j = 1, . . . ,M , are the ((j − 1)M + i)-th entries of the vector

ξ̂
joint

t|n := (ζ
(k)
t,11, . . . , ζ

(k)
t,MM)T = vec(P (k))⊙

[(
ξ̂t|n ⊘ ξ̂t|t−1

)
⊗ ξ̂t−1|t−1

]
, (13)

which are computed using (10), for t = p+1, . . . , n. Here, ⊗ denotes the Kronecker product.

The details of all the above derivations are given in Section A1.2 of the Supplement.

M-step: It maximizes Q with respect to θ, resulting in the updates θ(k+1). Due to the

structure ofQ, we separately maximize it with respect to P , {ν(m)}Mm=1, and {A(m),Σ(m)}Mm=1.

The updates for the transition probabilities αij and the intercepts ν(m) are given by

α
(k+1)
sp,j

=

∑n
t=p+1 ζ

(k)
t,sp,j∑M

l=1

∑n
t=p+1 ζ

(k)
t,sp,l

, α
(k+1)
ij =

∑n
t=p+2 ζ

(k)
t,ij∑M

l=1

∑n
t=p+2 ζ

(k)
t,il

, i, j = 1 . . . ,M , i ̸= sp;(14)

ν(m,k+1) =

∑n
t=p+1 ζ

(k)
tm (yt −

∑p
i=1A

(m,k)
i yt−i)∑n

t=p+1 ζ
(k)
tm

, m = 1, . . . ,M. (15)

Regarding the AR coefficients, we first updateA(m), and then Σ(m) or Ω(m), for each regime

m = 1, . . . ,M . The optimization problems for these updates are, respectively,

min
{A(m)

l }pl=1

1

2(n− p)

n∑
t=p+1

ζ
(k)
tm

(
yt − µ̄

(m)
t

)T
Ω̂

(m,k)(
yt − µ̄

(m)
t

)
+

p∑
l=1

d∑
i,j=1

rλ1

(
a
(m)
l,ij

)
, (16)

min
Σ(m)≻0

1

2(n− p)

(
n̂m log |Σ(m)|+ tr

(
Ω(m)S(m)

))
+

d∑
i ̸=j=1

rλ2

(
γ
(m)
ij

)
, (17)

where µ̄
(m)
t is (1) with ν(m) replaced by ν(m,k+1). Further, we let n̂m :=

∑n
t=p+1 ζ

(k)
tm ,

S(m) := UTΞ(m)U , with Ξ(m) = diag{ζ(k)p+1,m, . . . , ζ
(k)
n,m}, and U =

(
yp+1−µ

(m,k+1)
p+1 , . . . ,yn−

µ
(m,k+1)
n

)T
. The term µ

(m,k+1)
t is (1) with (ν(m),A(m)) replaced by (ν(m,k+1),A(m,k+1)).

11



We decouple the problem (16) coordinate-wise to alleviate the computation. Then both

optimization problems in (16) and (17) can be written in a general form as argminx{f(x)+

R(x)}, where f is differentiable and R is a penalty function. Using a generalized gradient

descent, the solution is obtained via the updates

x(j+1) ∈ argmin
x

1
2
∥x− (z(j) − 1

uj+1
∇f(z(j)))∥2 + 1

uj+1
R(x),

where z(j) interpolates between x(j) and x(j−1), and 1/uj+1 is the descent step size. Since

the penalty function R in (4) is decomposable, the updates have an analytical form for

all the penalty functions we consider. Full details are given in the Supplement, Sections

A1.3-A1.5, including an initialization of the EM algorithm and a data-dependent selection

of tuning parameters (λ1, λ2). Algorithm 1 summarizes the estimation steps.

Algorithm 1 Modified EM algorithm for maximum penalized likelihood estimation

1: Initialize: k = 0, α
(k)
ij , ν(m,k), {A(m,k)

l }pl=1, Σ
(m,k), for i, j,m = 1, . . . ,M , λ1, λ2 ≥ 0, ε > 0;

2: E-step: Compute ζti
(k), ζ

(k)
t,ij in (5), for i, j = 1, . . . ,M , using (11), (12), and (13);

M-step: For i, j = 1, . . . ,M , update α
(k+1)
ij using (14);

For m = 1, . . . ,M , update ν(m,k+1) using (15);

Form = 1, . . . ,M , update {A(m,k+1)
l }pl=1 andΣ(m,k+1) or Ω(m,k+1) solving (16)-(17);

3: If ∥θ(k) − θ(k+1)∥/∥θ(k)∥ < ε, return θ(k+1), else k = k + 1 and go to 2;

3.2 Selection of the number of regimes M

We use information-based criteria to estimate M when it is unknown. For a fitted MSVAR

with M regimes and MPLE θ̂n, we compute the regime-specific degrees of freedom as

Dm(θ̂n) =

p∑
l=1

d∑
i,j=1

1{(â(m)
l,ij )̸=0} +

d∑
i,j=1

1{γ̂(m)
ij ̸=0}, m = 1, . . . ,M,
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and let Em(M) = M − 1 +Dm(θ̂n). We denote the information criterion as

C(M) = −2ln(θ̂n; sp) +
M∑

m=1

cmEm(M), (18)

for some cm > 0. The common choices for cm are 2 (AIC) and log(n−p) (BIC). Städler and

Mukherjee (2013) introduced the mixture minimum description length (MDL) for HMMs

by setting cm = log(n̂m), where n̂m =
∑n

i=p+1 ζ̂im is the estimated sample size for regime

m and ζ̂im are given in (5). We select the number of regimes over a set of candidate

values M = {1, 2, . . . ,Mmax} as M̂ ∈ argmin
M∈M

C(M), for some pre-specified upper bound

Mmax ∈ N. Selection of the AR-order p is discussed in the Supplement, Section A1.6.

4 Prediction

Prediction is a highly relevant task in time series analysis. In stationary VAR models, an

optimal prediction at time n + 1 given the observations y1:n, in terms of the minimum

mean squared prediction error, is equal to the conditional expectation (Lütkepohl, 2007);

h-step-ahead prediction is performed similarly. In this section, we compute the predictive

density in MSVARs that can also be used to obtain the conditional expectations. For a

fixed h ∈ N, we compute the h-step-ahead predictive density fM(yn+1:n+h|y1:n) as follows.

The one-step-ahead predictive density (h = 1) is

fM(yn+1|y1:n) =
M∑

m=1

P(Sn+1 = m|y1:n)ϕ
(
yn+1;µ

(m)
n+1,Σ

(m)
)
, (19)

where the mean µ
(m)
n+1 is given in (1), and the conditional probabilities P(Sn+1 = m|y1:n) =∑M

j=1 αjmP(Sn = j|y1:n) can be readily computed using the forward-backward procedure

(Supplement, Section A1.2). An initial conditional distribution P(Sp = j|y1:p) is also re-
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quired to complete the computation. Since its effect on predictive density dissipates geomet-

rically as n grows (Douc et al., 2004), and given the homogeneity of St, any non-informative

distribution such as the discrete uniform P(Sp = j|y1:p) = 1/M, j = 1, . . . ,M , suffices.

Similarly, for h ≥ 2, by the model assumptions, the predictive density is

fM(yn+1:n+h|y1:n) =
M∑

m1:h=1

{
P(Sn+1 = m1, . . . , Sn+h = mh|y1:n)f(yn+1:n+h|y1:n, Sn+1:n+h = m1:h)

}
=

M∑
m1:h=1

P(Sn+1 = m1|y1:n)
( h∏
t=2

αmt−1,mt

)( h∏
t=1

ϕ
(
yn+t;µ

(mt)
n+t ,Σ

(mt)
))

.(20)

Given the MPLE θ̂n for a model with M regimes, the estimated predictive density

f̂M(yn+1:n+h|y1:n) is computed for h ≥ 1, using either (19) or (20). The optimal h-step

ahead predictor ŷn+h in terms of minimum mean squared error is then the conditional

expected value of Yn+h, given y1:n. For h = 1, the predicted value is

ŷn+1 =
M∑

m=1

P̂(Sn+1 = m|y1:n)
(
ν̂(m) +

p∑
l=1

Â
(m)

l yn+1−l

)
.

For h ≥ 2, predictions are obtained recursively by computing the predictions for yn+j,

j = 1, . . . , h− 1 (Lütkepohl, 2007; Krolzig, 1997). More specifically,

ŷn+h =
M∑

m=1

P̂(Sn+h = m|y1:n)
(
ν̂(m) +

p∑
l=1

Â
(m)

l ỹn+h−l

)
,

with ỹn+h−l = ŷn+h−l, if (h− l) > 0 or yn+h−l, if (h− l) ≤ 0.

Theorem 2 (Supplement, Section A2) states that, if M is not under-specified, the es-

timated predictive density of the over-fitted model based on MPLE consistently estimates

the h-step ahead predictive density (20) of the true MSVAR model. As a consequence, in

practice when the true number of regimes is unknown, a rather conservative choice of M

considering the sample size n can guarantee a reliable estimate of (20), and of the optimal

predictor in the sense of minimum mean squared prediction error.
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5 Simulation study

Simulation design. We consider MSVAR models with p = 1, M = 2, 3, dimensions

d = 20, 40, 100, and sample sizes n between 200 and 800. For these values of d, the

parameter vector θ⋆ of the data-generating MSVAR models has 104, 202 and 504 nonzero

entries, respectively, and is designed as follows. We set the number of nonzero entries per

matrix to be ⌈d/4⌉, randomly scattered on each matrix, and thus not assuming a specific

sparsity structure in the AR and covariance or precision matrices. We set the true non-

zero AR coefficients for each regime m = 1, . . . ,M as: ν
(m)
i

⋆
∼ N (m− 2, 0.01), (a

(m)
l

⋆
)ij ∼

N ((−1)m, 0.01). We ensure that the resulting MSVAR is stationary. Note that a VAR

process with AR coefficients A1, . . . ,Ap is stationary if the matrix A1 · · ·Ap−1 Ap

Id(p−1)×d(p−1) 0d(p−1)×d

 (21)

has all its eigenvalues inside the unit circle (Lütkepohl, 2007, Section 9.1). In all of our

simulations, to ensure stationarity of the VAR process for each Markov regime, we scale

the AR matrices with entries (a
(m)
l

⋆
)ij (generated as described above) to ensure that the

modulus of each eigenvalue of the matrix in (21) is at most 0.75.

For the covariance matrices, we first sample γ
(m)
ij ∼ N ( (−1)m

2
, 0.01), i ̸= j, γ

(m)
ii ∼

N (0, 0.01), and subsequently use one of the following formulas to obtain the nonzero el-

ements, depending on the scenario, either covariance or precision matrices, under study:

σ
(m)
ij

⋆
= 1

2
(γ

(m)
ij + γ

(m)
ji ), ω

(m)
ij

⋆
= 1

2
(γ

(m)
ij + γ

(m)
ji ). To ensure positive-definiteness and nu-

merical stability, if necessary, we shift the eigenvalues of matrices by adding a multiple of

the identity matrix. This also aids in controlling the condition number (Rothman et al.,
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2008). We denote scenarios S1 and S2 respectively corresponding to sparse covariance and

precision matrices, along with sparse AR coefficients.

The transition probability matrix P ⋆ forM = 2 is set to: α⋆
11 = 0.75, α⋆

22 = 0.60; and for

M = 3 to: α⋆
11 = 0.5, α⋆

12 = 0.25, α⋆
21 = 0.2, α⋆

22 = 0.6, α⋆
32 = 0.25, α⋆

33 = 0.5. These choices

test the estimation performance for an unequal number of data points in each regime.

Performance measures. Recall the MPLE θ̂n ≡ θ̂ of θ⋆, and let θ̃n ≡ θ̃ be the

maximum likelihood estimate of θ⋆ knowing its zero entries a priori. For a subvector v of

θ⋆, let v̂ and ṽ be the corresponding subvectors of θ̂ and θ̃, respectively. Furthermore, let

M̂ be the estimate of the true number of regimes M using either BIC or MDL introduced

in Section 3.2. We consider the following performance measures:

• relative estimation error: REE(v̂, ṽ) = EE(v̂)/EE(ṽ) = ||v̂−v||
||v|| / ||ṽ−v||

||v|| ∈ [0,∞);

• true positive rate: TPR(v̂) =
∑

i 1{|v̂i|>0}1{|vi|>0}∑
i 1{|vi|>0}

∈ [0, 1];

• true negative rate: TNR(v̂) =
∑

i 1{|v̂i|=0}1{|vi|=0}∑
i 1{|vi|=0}

∈ [0, 1];

• correctly selected number of regimes: 1{M̂=M} ∈ {0, 1},

where || · || represents the Euclidean norm and 1{·} is the indicator function. We compute

EE, REE, TPR and TNR for different subvectors v corresponding to the AR coefficients

and the covariance or precision matrices. We exclude the AR intercepts and the diagonals

of the covariance or precision matrices when computing TPR and TNR.

Since in the computation of θ̃ we use the knowledge of the true zero parameters, in

general, we expect θ̃ to outperform θ̂ which estimates the zero parameters through pe-

nalization. Thus, we focus on the REE to quantify the performance of our estimation

methodology relative to θ̃, and seek to obtain the empirical mean or median of all the per-

formance measures, except EE, close to 1. However, in the case of estimation of precision
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matrices, we observe REE < 1 which occurs due to the way we compute θ̃ without directly

using the knowledge of the true zero parameters in the precision matrices. More details

are provided in the Supplement, Section A3.

Our results are based on 50 simulated samples from each MSVAR model with a fixed

parameter setting as described in the Simulation design. We start recording the gener-

ated observations at t = 401, to allow for a simulation burn-in. The first state is always set

as s−399 = 1. For the estimation stage, we condition on sp = 1. We analyze the results for

scenario S1 (sparse covariance matrix) here; those for scenario S2 (sparse precision matrix)

are given in the Supplement, Section A3, along with additional simulation designs on spar-

sity structure. We use BIC for selection of the tuning parameters (λ1, λ2) using the method

described in the Supplement, Section A1.5, as we find that AIC chooses over-parameterized

models and therefore has a decreased performance.

The algorithms are implemented in C using the GNU Scientific Library (GSL) (Galassi

et al., 2009) v2.7. The optimization procedure is implemented in parallel so that the

estimation is done for all the regimes in an MSVAR model simultaneously.

5.1 Parameter estimation and sparsity

We fixM = 2, p = 1, and consider dimensions d = 20 with sample sizes n ∈ {200, 300, 400},

d = 40 with n ∈ {300, 400, 500}, and d = 100 with n ∈ {600, 700, 800}. For these values

of d, the parameter vector θ to be estimated by our method has dimensions K = M
(
d +

pd2+d(d+1)/2
)
+M(M−1) = 1262, 4922 and 30302, respectively. Thus, even though the

change from d = 20 to 100 may appear moderate, the corresponding number of parameters

to be estimated is very large. The results for d = 40, 100 are discussed below, and those
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for d = 20 are given in Section A3 of the Supplement; see also the end of this section.

Figure 1 shows the REE boxplots. We observe that for the AR coefficients, the

adalasso and scad attain a performance close to θ̃, followed by mcp and the lasso.

For covariance matrices, scad and mcp outperform the other penalties, and the medians

reveal that they are comparable to θ̃. Overall, scad and mcp attain a performance close

to θ̃, followed by the lasso and adalasso. Estimation of covariance matrices is more

difficult, as the medians depart from 1.0 more noticeably. In computing the overall REE,

the estimation errors of the transition probabilities are included.

Figure 2 shows the TPR boxplots. We observe that the MPLE performs well under

this measure. At least one penalty function attains an overall median TPR above 0.90 for

the dimensions and sample sizes considered. The lasso, scad and mcp perform similar

to each other, while adalasso is less accurate. In terms of TNR (omitted), we find that

for any setting, the median is at least 0.95 for both the AR and covariance matrices.

In summary, even though our theoretical results are proved in the setting of fixed dimen-

sion and large sample size, we conclude from the above experiments that our methodology

has a good performance in finite-sample and moderate- to large-dimensions.

In Section A3 of the Supplement, we also provide the simulation results in terms of the

EE and TPR for d = 20 and a wider range of sample sizes n to demonstrate the consistency

and sparsity recovery property (Theorem 1) of the MPLE as n grows.
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Figure 1: Relative estimation error (REE) based on 50 samples: (a) d = 40,K = 4922 (b) d = 100,K =

30302, where d and K are resp. the data and parameter dimensions.
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Figure 2: True positive rate (TPR, nonzero parameter detection) based on 50 random samples: (a)

d = 40,K = 4922 (b) d = 100,K = 30302, where d and K are resp. the data and parameter dimensions.
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5.2 Predictive density estimation and number of regime selection

We use models with M ∈ {2, 3}, p = 1, and generate samples of size n+h. We take d = 20,

n = 800, and h = 8. We estimate the model parameters using n observations, setting the

number of regimes M as either correctly or under/over-specified, ranging from 1 to 5. For

the remaining h observations, we compute the estimated predictive densities in (20).
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Figure 3: h-step-ahead log-predictive density (20) based on 50 random samples, for the true number of

regimes M = 2∗ (top), 3∗ (bottom), d = 20, n = 800, h = 8. The x-axis shows M values used in estimation.

Figure 3 shows boxplots of the estimated h-step ahead log-predictive density of yn+1:n+h,

for different values of M . The results are based on 50 generated samples. We observe

that the median values for the models with over-specified M fall within the inter-quantile

range of the values for the model with correct M , which is expected as per the result of

our Theorem 2 on the predictive density. The median for the under-specified M clearly

deviates from the other medians, attaining a lower value. This is true for all the penalties.
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Next, we examine the performance of the criterion (18) for estimating M when the AR-

order p is fixed. The results for estimating p are given in the Supplement, Section A1.6.

We consider d = 20 and n ∈ {400, 600, 800}. We generate the data using models with true

number of regimes M = 1, 2, 3, and estimate M using the BIC over the candidate values

ranging from 1 to 5 for all the penalties. The mean of the performance measure 1{M̂=M},

with M̂ being the estimated number of regimes, is reported in Figure 4. The adalasso

outperforms other penalties and estimates the true M with a mean rate of at least 80%

for any sample size. The performance for n = 600, 800 is very good with rates above 95%.

The lasso also appears more stable than scad and mcp. The performance of the MDL is

not as accurate and omitted, which can be attributed to the small sample size per regime.

M = 1 M = 2 M = 3
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Figure 4: Proportion of correctly selected M using BIC based on 50 random samples for d = 20.

6 Case study: Identification of a recessionary regime

We consider a large-scale dataset of Canadian national and provincial macroeconomic indi-

cators of observations from 1981 to 2022, containing 481 observations on 386 variables. The

indicators belong to several categories, such as labour market, housing, construction and

21



manufacturing. Fortin-Gagnon et al. (2018) analyzed a part of this dataset using probit and

logit lasso models to identify the turning points of three economic recession events, and

predict recession probabilities. As MSVARs have been used to successfully model business

cycles (Hamilton, 1988), our aim is to fit a model to this data and identify the recessionary

regimes. The effects of manufacturing decline and house boom on US non-employment

levels have been studied before (Charles et al., 2019). With this motivation, we consider

housing price index (HPI) and manufacturing index (MI) for the top 5 Canadian provinces

in terms of population1, hence the time series Yt has dimension d = 10. We fit MSVARs

with M = 1, 2, 3, 4, p = 1, 2, 3, each penalty, and scenarios of sparse covariance and pre-

cision matrices. We use BIC and MDL, and the AR-order selection method based on the

hierarchical group-lasso, to choose the final model based on the adalasso with M̂ = 3,

p̂ = 1 and sparse covariance matrices; see Supplement, Section A4 for all the details.

Figure 5 displays the estimated AR coefficients and covariance matrices for each regime,

with transition probabilities (α̂11, α̂12) = (0.81, 0.13), (α̂21, α̂22) = (0.23, 0.69), and (α̂31, α̂32) =

(0.40, 0.40). We also show the estimated regime for each observation at time t as argmaxm P̂(st =

m|yp+1:n). In the same figure, we also mark the recession periods of the Canadian economy,

which took place over the periods: June 1981 to October 1982, March 1990 to April 1992,

and October 2008 to May 2009.

The logit model used in Fortin-Gagnon et al. (2018) provided smooth estimates of the

predictive recession probabilities, which overlapped with the actual recessionary periods.

From Figure 5, our fitted MSVAR is also able to identify a regime whose occurrence prob-

1Statistics Canada, Table 17-10-0009-01; DOI: https://doi.org/10.25318/1710000901-eng
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Figure 5: (a) Time series of d = 10 Canadian province macroeconomic indicators: 5 housing price (HPI)

and 5 manufacturing (MI) indices. (b) Estimated most probable membership of each observation to any of

M̂ = 3 regimes, and recession periods of Canadian economy. (c) Absolute value of estimated regime-AR

coefficients, AR-order p̂ = 1. (d) Absolute value of estimated regime-covariance matrix entries.
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ability is substantially high before and during the recession periods. This corresponds to

regime 2, and agrees with the general definition of a recession as a persistent decline in an

economy with a specified minimum duration. The plot also shows that regime 3 captures

particularly extreme values of some variables (HPI-Ont., HPI-Man., HPI-B.C., MI-Que.,

MI-Ont., MI-Alb.) and seems to appear more often around the recessionary periods. A

proportion of 5% (25) observations are classified to regime 3. Figure 5(b) suggests that

our method is able to detect the recession periods based on 2 indicators from 5 provinces,

compared to 368 national and provincial variables used in Fortin-Gagnon et al. (2018).

Prediction. We consider the 8-month recessionary period over October 2008 to May

2009, and the subsequent non-recessionary 8-month period over June 2009 to January 2010,

for a total of 16 test observations. We fit a sparse MSVAR model (M̂ = 3, p̂ = 1) using all

the data up to the month prior to a test point under consideration, and perform an out-

of-sample one-step-ahead regime-membership prediction. For a test point, we determine

that it belongs to a recession if its predicted maximum regime probability corresponds to

regimes either 2 or 3.
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Figure 6: Out-of-sample one-step-ahead predicted regime membership probabilities for the Canadian

province macroeconomic test data. The first 8 points correspond to the third Canadian recession, the

last 8 points are non-recessionary.

24



Figure 6 shows the predicted probabilities for the 16 test observations. Note that even

though we correctly identify the regimes for 14 test points, caution must be taken to predict

recessions using the method since, as stated by Fortin-Gagnon et al. (2018), the presence

of a recession is rather a rare event in the dataset.

7 Conclusion

We introduce a general penalized conditional likelihood method for fitting sparse MSVARs.

It provides both sparse regime-specific AR coefficients and covariance or precision matrices,

along with estimation of transition probabilities of the Markov chain. We prove consistency

and sparsity properties of the proposed estimators. We also discuss estimation of the number

of regimes and predictive density. We implement the method via an efficient modified

EM algorithm. We examine the performance of the method via simulation and real data

analysis. Simulations indicate that our method is reliable for fitting sparse MSVARs to

moderate- and large-dimensional time series data. In practice, an increase in the number of

regimesM and AR-order p has impact on the performance of the method, which is expected

as the optimization problem (4) becomes more challenging. Our simulations also show that

none of the penalties dominates the others in all the settings considered here. Thus, in

practice, we suggest analyzing a dataset using all the penalties and choosing a sparse model

that optimizes a selection criterion (e.g., BIC) as done in our real data analysis.

It can be shown that the BIC based on (18) does not under-estimate the true number

of regimes M . A possible research direction is to investigate conditions under which BIC

consistently estimates M . Another direction is the extension of our method to nonhomoge-
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neous Markov chains. Shrinkage estimators can be incorporated by adjusting the penalty

in (4) and also allowing the dimension d to increase with the sample size n as in the work

of Fiecas et al. (2017), which require further investigation.

Supplementary materials

A Supplementary pdf document to this paper includes: (i) additional methodology de-

tails including the EM algorithm, (ii) theoretical results and proofs, (iii) complementary

numerical results, and (iv) complementary case study results.

Code: “code msvar.zip” contains the code to replicate Figure 1(a) and Figure 2(a).
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