MATH 765 ASSIGNMENT 3

DUE WEDNESDAY NOEVEMBER 6

- 1. Show that $\operatorname{Lip}(1, L^p(\mathbb{T}^n)) = W^{1,p}(\mathbb{T}^n)$ for 1 .
- 2. Prove that $[L^p(\mathbb{T}^n), W^{1,p}(\mathbb{T}^n)]_{\alpha,q} = B^{\alpha}_{p,q}(\mathbb{T}^n)$ for $0 < \alpha < 1$ and $1 \le p, q \le \infty$. 3. Show that $B^{\alpha}_{p_1,q}(\mathbb{T}^n) \hookrightarrow B^{\alpha}_{p_2,q}(\mathbb{T}^n)$ if and only if $p_1 \ge p_2$ (assume $0 < \alpha < 1$). 4. Prove that $[L^p(\mathbb{T}), W^{2,p}(\mathbb{T})]_{\theta,q} = B^{2\theta}_{p,q}(\mathbb{T})$ for $0 < \theta < 1$ and $1 \le p, q \le \infty$. 5. Show that $B^1_{p,q}(\mathbb{T}) \ne W^{1,r}(\mathbb{T})$ unless p = q = r = 2.

- 6. Let $\Omega \subset \mathbb{R}^2$ be a bounded polygonal domain, and let S_P^d be the standard Lagrange finite element spaces, where d > 0 is the local polynomial order and P is a conforming partition of Ω , with #P > 1. For which values of the indices p, q and α do we have the inclusion $S_P^d \subset B_{p,q}^{\alpha}(\Omega)$?

Date: Fall 2013.