MATH 765 ASSIGNMENT 2

DUE WEDNESDAY OCTOBER 9

- 1. Let T be an infinite collection of triangles. For any triangle $\tau \in T$, we let $h_{\tau} = \operatorname{diam}(\tau)$, $|\tau|$ denote the area of τ , and let ρ_{τ} be the radius of the inscribed circle of τ . Show that the followings are equivalent.
 - a) The ratio $h_{\tau}^2/|\tau|$ is uniformly bounded.
 - b) The ratio h_{τ}/ρ_{τ} is uniformly bounded.
 - c) The minimum angle of τ is uniformly bounded away from 0.

If any (hence all) of the preceding conditions holds for T, then we say that the collection T is shape regular (or non-degenerate).

2. Let $\Omega \subset \mathbb{R}^2$ be a polygonal domain and let \mathscr{P} be a family of *conforming* triangulations of Ω . We say that \mathscr{P} is graded (or locally quasi-uniform, or has the K-mesh property), if

$$\sup\left\{\frac{h_{\sigma}}{h_{\tau}}:\sigma,\tau\in P,\,\overline{\sigma}\cap\overline{\tau}\neq\varnothing,\,P\in\mathscr{P}\right\}<\infty.$$

Prove that if \mathscr{P} is shape regular (as the collection $\bigcup_{P \in \mathscr{P}} P$), then it is graded.

- 3. Let $\Omega \subset \mathbb{R}^n$ be a bounded polyhedral domain. Show that \mathscr{C}^0 Lagrange finite element spaces are contained in $W^{k,p}(\Omega)$ for $k \in \{0,1\}$ and any $1 \leq p \leq \infty$, but not in $W^{2,p}(\Omega)$ for any $1 \leq p \leq \infty$.
- 4. Recall that the Sobolev inequality

$$\|u\|_{L^q} \le C |u|_{W^{1,p}}, \qquad u \in \mathscr{D}(\mathbb{R}^n), \tag{(*)}$$

with some constant C = C(q), is valid for $1 \le q < \infty$, with $\frac{1}{p} = \frac{1}{q} + \frac{1}{n}$. a) By way of a counterexample, show that (*) fails when $\frac{1}{p} \ne \frac{1}{q} + \frac{1}{n}$.

- b) Using the inequality (*), prove

$$\|u\|_{L^q} \le C \|u\|_{W^{1,p}}, \qquad u \in \mathscr{D}(\mathbb{R}^n), \tag{**}$$

with C = C(p,q), for $1 \le p \le q < \infty$, and $\frac{1}{p} \le \frac{1}{q} + \frac{1}{n}$.

- c) Show that (**) fails when $\frac{1}{p} > \frac{1}{q} + \frac{1}{n}$.
- d) Show that the inequality (**) fails whenever q < p.
- e) Show that (**) fails for $q = \infty$ and $p \le n$ when $n \ge 2$. Is it true in 1d?
- 5. Let $\Omega \subset \mathbb{R}^n$ $(n \geq 2)$ be a finite union of bounded star-shaped domains. Prove the Sobolev inequality

$$||u||_{L^q(\Omega)} \le C ||u||_{W^{1,p}(\Omega)},$$

Date: Fall 2013.

DUE WEDNESDAY OCTOBER 9

for $1 \le p \le q < \infty$, and $\frac{1}{p} < \frac{1}{q} + \frac{1}{n}$. *Hint*: Use the Young inequality

 $||f * g||_{L^{q}(\mathbb{R}^{n})} \leq ||f||_{L^{r}(\mathbb{R}^{n})} ||g||_{L^{p}(\mathbb{R}^{n})},$

where $1 + \frac{1}{q} = \frac{1}{p} + \frac{1}{r}$ and $1 \le p, q, r \le \infty$. (Note that the Sobolev inequality is true for the borderline case $\frac{1}{p} = \frac{1}{q} + \frac{1}{n}$ as well, which can be proved for instance by using the Hardy-Littlewood-Sobolev inequality for the Riesz potentials, or by the elementary method due to Gagliardo and Nirenberg.)

- 6. Let $\tau \subset \mathbb{R}^n$ be a simplex and let $I_{\tau} : C(\overline{\tau}) \to \mathbb{P}_{d-1}$ be the standard nodal interpolation onto the polynomials of order d. Derive a bound on the interpolation error $||u - I_{\tau}u||_{W^{k,\infty}(\tau)}$ in terms of $h = \operatorname{diam} \tau$ and Sobolev (semi) norms of u. Explicitly state what parameters $(k, \gamma \text{ etc.})$ the constant may depend on.
- 7. Let $\Omega = (0,1)^2$ be the unit square, and for $j \in \mathbb{N}$, let P_j be the collection of 2^{2j} small squares of side length 2^{-j} tiling up Ω . Denote by $\overline{\mathbb{P}}_{d-1}$ the set of bivariate polynomials of the form $p(x_1)q(x_2)$ with $p, q \in \mathbb{P}_{d-1}$ single variable polynomials. Given $d \in \mathbb{N}$, we define the space S_j of dyadic splines as follows:

$$S_j^{d,r} = \{ u \in C^r(\Omega) : u | Q \in \overline{\mathbb{P}}_{d-1} \text{ for each cube } Q \in P_j \}.$$

We also define the *cardinal B-splines* on \mathbb{R} by the recursive formula

$$N^d = N^{d-1} * N^1, \qquad d = 2, 3, \dots,$$

with $N^1 = \chi_{(0,1)}$ the characteristic function of the unit interval.

a) Show that $N^d \in C^{d-2}(\mathbb{R}), N^d|_{(k,k+1)} \in \mathbb{P}_{d-1}$ for $k \in \mathbb{Z}$, and $\operatorname{supp} N^d = [0,d]$.

b) We fix d, and define the dyadic cardinal B-splines

$$\phi_{j,k}(x) = N^d (2^j x - k), \qquad j \in \mathbb{N}_0, \, k \in \mathbb{Z},$$

and their tensor product version

$$\phi_{j,\alpha}(x,y) = \phi_{j,\alpha_1}(x)\phi_{j,\alpha_2}(y), \qquad j \in \mathbb{N}_0, \, \alpha \in \mathbb{Z}^2.$$

For $j \in \mathbb{N}_0$, let Φ_j be the collection of those $\phi_{j,\alpha}$ ($\alpha \in \mathbb{Z}^2$) whose supports nontrivially intersect the unit square Ω . Show that Φ_j is a basis of $S_j^{d,d-2}$.

c) From now on we will fix d = 4. For each $Q \in P_j$, we define the Hermite interpolant $v = H_Q u \in \overline{\mathbb{P}}_3$ for functions $u \in C^1(\overline{\Omega})$ by the following relations

$$v(x) = u(x),$$

$$\partial_i v(x) = \partial_i u(x), \quad (i = 1, 2),$$

$$\partial_1 \partial_2 v(x) = \partial_1 \partial_2 u(x),$$

where x runs over the corner points of Q. Since dim $\mathbb{P}_3 = 16$, the polynomial v is well defined. Let us define the global interpolant $H_j u$ by $(H_j u)|_Q = H_Q u$ for each $Q \in P_j$. Show that $H_j u \in S_j^{4,1}$ for $u \in C^1(\overline{\Omega})$.

d) Prove the error estimate

$$||u - H_j u||_{W^{k,p}(\Omega)} \le c \, 2^{-j(m-k)} |u|_{W^{m,p}(\Omega)},$$

for $0 \le k \le m \le 4$, $m > \frac{n}{p} + 1$ and $1 \le p \le \infty$. Why are there restrictions on m?