MATH 765 ASSIGNMENT 1

DUE FRIDAY SEPTEMBER 20

1. Let X be a Hilbert space, and let $A: X \to X'$ be a bounded linear operator. Suppose that A is *strictly coercive* in the sense that

$$\langle Au, u \rangle \ge \alpha \|u\|^2 \quad \text{for} \quad u \in X,$$

with some constant $\alpha > 0$.

- a) Show that for any $f \in X'$, there exists a unique $u \in X$ satisfying Au = f. Show also that $||u|| \le \alpha^{-1} ||f||$.
- b) Let $X_h \subset X$ be a closed linear subspace, and let $f \in X'$. Then the *Galerkin* problem is: Find $u_h \in X_h$ satisfying

$$\langle Au_h, v \rangle = \langle f, v \rangle$$
 for all $v \in X_h$.

Show that the Galerkin problem has a unique solution, and that $||u_h|| \leq \alpha^{-1} ||f||$. The solution u_h is called the *Galerkin approximation* of u from the subspace X_h .

c) Show that $u - u_h$ is A-orthogonal to X_h , i.e.,

$$\langle A(u-u_h), v \rangle = 0$$
 for all $v \in X_h$.

This property is called *Galerkin orthogonality*.

d) Prove that the Galerkin approximation satisfies Céa's lemma:

$$||u - u_h|| \le \frac{||A||}{\alpha} \inf_{v \in X_h} ||u - v||.$$

- 2. Show that piecewise quadratics have a nodal basis consisting of values at the nodes x_i together with the midpoints $\frac{1}{2}(x_i + x_{i+1})$. Calculate the stiffness matrix for these elements, corresponding to the problem -u'' = f with u(0) = u(1) = 0.
- 3. For measurable functions u and w defined on the interval I = (0, 1), we say that w is a *weak derivative* of u if

$$\int_{I} u\varphi' = -\int_{I} w\varphi, \quad \text{for all} \quad \varphi \in C^{1}_{c}(I).$$

Moreover, for $u, v \in L^p(I)$, we say that v is a *strong* L^p *derivative* of u if there exists a sequence $\{u_k\} \subset C^1(I)$ such that

 $u_k \to u$ and $u'_k \to v$ both in L^p , as $k \to \infty$.

Show that each of the two derivatives is unique, if it exists, up to modifications on sets of measure zero. Prove that for $u \in L^p(I)$, both concepts coincide. In other words, show that each of the following statements implies the others.

Date: Fall 2013.

- a) $v \in L^p(I)$ is a weak derivative of u.
- b) $v \in L^p(I)$ is a strong L^p derivative of u.
- 4. In this exercise we will study Sobolev spaces on the interval I = (0, 1). Let $1 \le p < \infty$, and define the norm

$$||u||_{1,p} = (||u||_{L^p}^p + ||u'||_{L^p}^p)^{1/p},$$

for $u \in C^1(\overline{I})$. Then we define $H^{1,p}(I)$ to be the completion of $C^1(\overline{I})$ with respect to the norm $\|\cdot\|_{1,p}$, and let

$$W^{1,p}(I) = \{ u \in L^p(I) : u' \in L^p(I) \},\$$

where u' is understood in the weak sense (or in the strong, or in the Beppo Levi sense, since they are all equivalent).

- a) Prove the Meyers-Serrin theorem: $H^{1,p}(I) = W^{1,p}(I)$.
- b) Prove the Sobolev inequality

$$||u||_{L^{\infty}} \le 2^{1-1/p} ||u||_{1,p}, \qquad u \in W^{1,p}(I).$$

- c) Recall that an element of $W^{1,p}(I)$ is an equivalence class of functions that differ on sets of measure zero. So one can change the values of a function on a set of measure zero, and it would still correspond to the same element in $W^{1,p}(I)$. Make sense of, and prove the statement that the elements of $W^{1,p}(I)$ are continuous functions.
- d) Prove the *Friedrichs inequality*

$$||u||_{L^p}^p \le 2^{p-1} ||u'||_{L^p}^p + 2^{p-1} |u(\xi)|^p, \qquad u \in W^{1,p}(I), \quad \xi \in [0,1].$$

e) Prove the *Poincaré inequality*

$$||u||_{L^p}^p \le 2^{p-1} ||u'||_{L^p}^p + 2^{p-1} |\int_I u|^p, \qquad u \in W^{1,p}(I).$$

f) Let $W_0^{1,p}(I)$ be the closure of $C_c^1(I)$ in $W^{1,p}(I)$. Show that

$$W_0^{1,p}(I) = \{ u \in W^{1,p}(I) : u(0) = u(1) = 0 \}.$$

- g) Show that $\{u \in C^1(\overline{I}) : u'(0) = u'(1) = 0\}$ is dense in $W^{1,p}(I)$.
- h) Prove the Rellich-Kondrashov theorem: $W^{1,p}(I)$ is compact in $L^p(I)$.
- i) Show that $W^{1,1}(I) = AC(\overline{I})$, where $AC(\overline{I})$ is the space of absolutely continuous functions on [0, 1].
- 5. Define the function $f \in L^1(B_1)$ by $f(x) = |x|^r$ where $B_1 = \{x \in \mathbb{R}^n : |x| < 1\}$ and r > 1 n is a constant. Determine the values of $p \ge 1$ such that $f \in W^{1,p}(B_1)$.
- 6. Let $u \in C^{\infty}(\Omega)$ be given in polar coordinates by $u(r, \theta) = r^a \sin(a\theta)$ with

$$\Omega = \{ (r, \theta) : r < 1, \, 0 < \theta < \pi/a \}$$

where $a \geq \frac{1}{2}$ is a constant. Determine the values of $p \geq 1$ such that $u \in W^{2,p}(\Omega)$.

 $\mathbf{2}$