
Lecture 8 Notes on Finite Element Methods

Lecture 8
Lp-stability

Let Ω be a bounded polyhedral domain in Rn, let P be a conforming partition
of Ω and let SP = Sd(P ) be a Lagrange finite element space. Write

hmin = min
τ∈P

hτ , hmax = max
τ∈P

hτ , γ = max
τ∈P

γτ .

The direct (Jackson) estimate

inf
v∈SP

�u− v�Wk,p(Ω) ≤ Chs−k
max|u|W s,p(Ω), (0 ≤ k ≤ s ≤ d), (8.1)

we have proved

inf
v∈SP

�u− v�Wk,p(Ω) ≤ Chd−k
max|u|Wm,p(Ω), (m > n/p), (8.2)

where C = C(γ). Furthermore, we have proved the inverse (Bernstein) estimates
for v ∈ SP :

�v�Lp(Ω) ≤ Ch
n
p−

n
q

min �v�Lq(Ω), (1 ≤ q ≤ p ≤ ∞), (8.3)

and
�v�W 1,p(Ω) ≤ Chm−k

min �v�Lp(Ω), (8.4)

where C = C(γ).

§1 Lp-stability

For v =
�

z∈NP
ξzφz, define the quantity

[v]p =

� �

z∈NP

|ξz|p�φz�pLp

�1/p

. (8.5)

Theorem 8.1. Let 0 < p ≤ ∞. Then for any v ∈ SP

c1[v]p ≤ �v�Lp ≤ c2[v]p, (8.6)

where c1 = c1(n, d, p, γ) and c2 = c2(n, d, p).

Proof. Let v =
�

z∈NP
ξzφz,

�v�Lp =
�

τ∈P

�v�pLp =
�

τ∈P

����
�

z∈Nτ

ξzφz

����
p

Lp(τ)

≤ C
�

τ∈P

�

z∈Nτ

|ξz|p�φz�pLp(τ),
�
C = C(d)

�
,
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by convexity of x �→ x
p. Let κz,τ = |ξz|p�φz�pLp(τ), it is clear that κz,τ = 0 if

τ ∩ suppφz = Ø and
�

τ∈P
τ∩ωz �=Ø

|ξz|p�φz�pLp(τ) = |ξz|�φz�pLp(ωz)
, (ωz = suppφz).

We have

�v�pLp ≤ C

�

τ∈P
z∈NP

κz,τ = C

�

z∈NP

�

τ∈P
τ∩ωz �=Ø

κz,τ = C

�

z∈NP

|ξz|�φz�pLp(ωz)
= C[v]pLp ,

where C depends on d. Conversely, we want

�

z∈Nτ

|ξz|�φz�pLp(τ) ≤ C

����
�

z∈Nτ

ξzφz

����
p

Lp(τ)

,

but this is true by scaling τ back to σ and C here will depend on γ.

§2 Conditioning

Consider the following Poisson problem:
�
−∆u = f in Ω

u = 0 on ∂Ω.

Consider the finite element space SP = S
d(P ) ∩ H

1
0 (Ω). NP only contains the

interior nodes. The Galerkin problem (PG) is:

a(uP , v) = �f, v� v ∈ SP ,

where uP ∈ SP and a(·, ·) is the bilinear form a(u, v) = �∇u,∇v�. Solving (PG)
is equivalent to solving the linear system Aξ = η, where

Ayz = a(φy,φz) = �∇φy,∇φz� , y, z ∈ NP ,

and
ηz = �f,φz� , uP =

�

z∈NP

ξzφz, z ∈ NP .

We pose the following question: Is the condition number κ = �A��A−1� reason-
able?

Theorem 8.2. For the matrix A formulated by (PG),

c1h
−2
max ≤ κ ≤ c2

�
hmax

hmin

�n

h
−2
min, c1 > 0. (8.7)
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Proof. Since A is symmetric positive definite (consequence of coercivity), we have

λmax = max
ξ

ξTAξ

ξT ξ
, λmin = min

ξ

ξTAξ

ξT ξ
.

Have �φz�2L2 ≤ Chn
max and �φz�2L2 ≥ Ch2

min so by L2
-stability,

Chn
minξ

T ξ ≤ �v�2L2 ≤ C
�

z∈NP

|ξz|2�φz�2L2 ≤ Chn
maxξ

T ξ,

Moreover,

ξTAξ =

�

y,z∈NP

ξya(φy,φz)ξz = a(v, v) = �∇v�2L2 ,

so

�∇v�2L2

�v�2L2

· Chn
min ≤ ξTAξ

ξT ξ
≤

�∇v�2L2

�v�2L2

· Chn
max.

By Bernstein, �∇v�2L2 ≤ h−2
min�v�2L2 which makes λmax ≤ h−2

minh
n
max. By Friedrichs,

�∇v�L2 ≥ C�v�L2 which makes λmin ≥ Chn
min. We arrive at κ ≤ C

�
hmax
hmin

�n
h−2
min.

For the lower bound, take v = φz, �∇φz�L2 ≥ Ch−2hn
. If n ≥ 2, choose z

belonging to the largest τ so that �∇φz�2L2 ≥ Chn−2
max so we can conclude

λmax ≥ �∇φz�2L2 ≥ Chn−2
max.

Take u ∈ C∞
c (Ω) with u ≡ 1 on some B ⊂ Ω and v = IPu.

�∇v�L2 ≤ �∇(v − u)�L2 + �∇u�L2 ≤ hmax|u|W 2,2 + |u|W 1,2 ≤ C,

(observe that �∇(v − u)�L2 = |u − IPu|W 1,2). We see that λmin ≤ Chn
max which

implies

κ ≥ Ch−2
max.

§3 Interpolation of function spaces

Recall the Riesz-Thorin convexity theorem:

Let T be a linear operator such that T : Lp1 → Lq1 and T : Lp2 → Lq2

are bounded, then T : Lp → Lq
is bounded for

1

p
=

1− θ

p1
+

θ

p2
,

1

q
=

1− θ

q1
+

θ

q2
, (0 < θ < 1).

35



Lecture 8 Notes on Finite Element Methods

Example 7. Recall �u∗v�p ≤ �u�p�v�1, �u∗v�∞ ≤ �u�p�v�q where 1/p+1/q =
1. Define Tv = u ∗ v. Then, T : L1 → Lp

and T : Lp� → L∞
are bounded, with

1/p+ 1/p� = 1. All pairs in line L satisfy boundedness. Hence if

1

p
− 1

r
= 1− 1

q
=⇒ 1

r
+ 1 =

1

p
+

1

q
,

T : Lq → Lr
is bounded, that is, we have the Young inequality

�u ∗ v�r ≤ �u�p�v�q.

�
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