Lecture 8 Notes on Finite Element Methods

Lecture 8
LP-stability

Let 2 be a bounded polyhedral domain in R", let P be a conforming partition
of Q and let Sp = S¥(P) be a Lagrange finite element space. Write

Ppin = minh,, Ay = maxh,;, v =max-y,.
TEP TEP TEP

The direct (Jackson) estimate

1nf lu = vllwer@y < Chit lulweng), (0<k<s<d), (8.1)

we have proved

vlenf ||u - UHW’”” (Q) < Chmax|u’WmP (€)> (m > n/p)7 (82)

where C' = C(7). Furthermore, we have proved the inverse (Bernstein) estimates
for v € Sp:

lollzr@) < Chig [0l oy, (1< q<p < o0), (8:3)

min

and
[ollwir) < ChinFllvlloe @), (8.4)

mwn

where C' = C(7).

81 LP-stability

For v =73\ £.¢., define the quantity

1/p
- (3 terlot) ©.5)
2eNp
Theorem 8.1. Let 0 < p < oo. Then for any v € Sp
alvlpy <vllre < vy, (8.6)

where ¢; = ¢1(n,d,p,7y) and ¢y = co(n,d,p).

Proof. Let v = ZZGNP £,

lolle =D lollze =D || D &o- <CY Y lEPlg:I, (C=C(d),

TeP TeP "2eN; Le(r) TEP zeN;
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by convexity of @ — . Let k., = [&[P[¢:][],), it is clear that k., = 0 if
T Nsupp ¢, = D and

Z |§z|p||¢z||ip(q-) = |§z|||¢z||22p(wz)a (wz = Supp (bz)

TEP
TNw, #ZD
We have
Wl <C Y har =C > Y kar =C > &SN, = CloI,
TEP 2eNp T€EP zeNp
zeNp TNwz#D

where C' depends on d. Conversely, we want

p
Sl <l Y go.||
2EN; 2EN Lr(T)
but this is true by scaling 7 back to o and C here will depend on 7. ]

§2 Conditioning

Consider the following Poisson problem:

—Au=f in{
u=0 on 0f).

Consider the finite element space Sp = S4(P) N H} (). Np only contains the
interior nodes. The Galerkin problem (PG) is:

a(up,v) = (f,v) v e€ Sp,
where up € Sp and a(-,-) is the bilinear form a(u,v) = (Vu, Vv). Solving (PGQG)

is equivalent to solving the linear system A¢ = 7, where

Ayz = a(¢y7¢z) = <v¢y7 V¢Z>a y,z € Np,

and

772:<f7¢z>7 Up = Zfngz, ZGNP.

ZGNP

We pose the following question: Is the condition number x = || Al|||A™!]| reason-
able?

Theorem 8.2. For the matriz A formulated by (PG),

hmax " —
c1h;? S%S@(h ) h2

max man’
min

c > 0. (87)
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Proof. Since A is symmetric positive definite (consequence of coercivity), we have

/\max max gTAf >\mln - Hl' 5;7{25

£re
Have ||¢.]|2. < Chn,. and ||¢.||2, > Ch2,,, so by L-stability,

max min

Chypin€E < ll7 < C Y 1EPle:N72 < ChlL,ET¢,

2€Np
Moreover,
§MAE= ) Galdy, ¢:)6 = a(v,v) = | Vo7,
y,2€ENp

” Vo2 €A _ Vo2

UllL2 n V|2 n

Chmln— Chmax
v13. ETf o]l

By Bernstein, ||Vv||2, < ;2 ||v]|2, which makes Aar < hy A2, By Friedrichs,

min min' “max*

IVvl|zz > C||v|| g2 which makes A, > Ch™. . We arrive at k < C (2’”‘?’”) h2

min® min min*

For the lower bound, take v = ¢,, [|[V¢,|z > Ch™2h". If n > 2, choose z
belonging to the largest 7 so that ||V¢,||7. > Ch:.2 so we can conclude

max

Mgz > |V @.|[32 > Ch™ 2.

Take u € C=(Q2) with u = 1 on some B C Q and v = Ipu.
190l < 190 — )2 + [ Vullze < Amaslulwas + [ulwrz < C,
(observe that [|[V(v —u)||2 = |u — Ipu|yr2). We see that A, < ChZ . which

max
implies

k> Ch 2

mazx*

§3 Interpolation of function spaces

Recall the Riesz-Thorin convexity theorem:

Let T be a linear operator such that 7" : LP* — L% and T : P> — L%
are bounded, then T : LP — L? is bounded for

1 1—-6 6 1 1—-6 6
p 4! D2 q q1 q2
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Example 7. Recall [[ux [, < [[ully[[v]l1, [luxvlle < [[ully[lv]ly where 1/p+1/g =
1. Define T, = u*v. Then, T : L' — LP and T : L — L are bounded, with
1/p+1/p' = 1. All pairs in line £ satisfy boundedness. Hence if

11 1 1 11
S t=l-C = S l=-4 o,
por q r P g

T : L9 — L" is bounded, that is, we have the Young inequality

[ s vll < Jlullpl[vll,-
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