
Lecture 3 Notes on Finite Element Methods

Lecture 3
Strictly coercive problems

In the previous lectures we have established that in the Banach space setting, a
bounded linear map A : X → Y

∗ is surely invertible provided it, as well as its
adjoint, are bounded below. Moreover, given a bilinear form a : X ×Y → R, one
can (always) characterize A through

a(x, y) = �Ax, y� ∀x ∈ X ∀y ∈ Y.

For the problem Ax0 = b, we seek an approximate solution, otherwise referred to
as the Galerkin approximation, we considered closed linear spaces �X ⊂ X and
�Y ⊂ Y and have defined the Petrov-Galerkin problem

(PG) �x ∈ �X : �A�x, y� = b(y) ∀y ∈ �Y .

If (PG) admits a solution �x, then we have an optimality result governing the
Galerkin approximation error

�x0 − �x� ≤
�
1 +

�A�
�α

�
inf
x∈ �X

�x0 − x�.

We will now direct our focus to the case of strictly coercive problems in which we
assume that X = Y is reflexive and that a(x, x) ≥ α�x�2 for all x ∈ X for some
positive α. As a result, we have the following:

• A is invertible; the inf-sup conditions are satisfied.

• If we take �X = �Y , then we obtain the Galerkin (or Ritz-Galerkin) formu-
lation and

�α = inf
x∈ �X

sup
y∈ �X

a(x, y)

�x��y� ≥ α =⇒ (PG) is solvable,

with
�x0 − �x� ≤ C(α, �A�) inf

x∈ �X
�x0 − x�.

Remark. The constant �α depends on the subspace �X. However since �α ≥ α, C
does not depend on �X.

§1 Fourier-Galerkin method: an example

In this example we introduce the Fourier-Galerkin method. Let X = Y = H
1(T)

and recall the problem in Example 4 in the previous lecture:

− u
�� + u = f in T with a(u, v) =

� 2π

0

u
�
v
� + uv. (3.1)
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We consider {φk}|k|≤N comprising of sines and cosines up to frequency N and
define XN = span{φk}. Let uN ∈ XN be the Galerkin approximation of u from
subspace XN . We have

�u− uN�H1 ≤ C inf
v∈XN

�u− v�H1 .

Suppose now that u ∈ H
s with s ≥ 1 and that u =

�
k∈N akφk. We define an

H
s-semi-norm

|u|2
Hs =

�

k∈N

|k|2s|ak|2, (3.2)

and define the H
s-norm

�u�2
Hs = �u�2

L2 + |u|2
Hs . (3.3)

Remark. It is clear that |u|H1 ∼ �u��L2 .

Consider now TNu :=
�

|k|≤N
akφk ∈ XN ; this being the Fourier truncation of u.

We have,

�u− TNu�2H1 =
�

|k|>N

�
|ak|2 + |k|2|ak|2

�

≤ 2
�

|k|>N

|k|2|ak|2

= 2
�

|k|>N

|k|2s|k|2−2s|ak|2, (|k|2−2s ≤ N
2−2s

, 2− 2s < 0),

≤ cN
2−2s|u|2

Hs .

We obtain the Fourier-Galerkin error estimate for (3.1),

�u− uN�H1 ≤ cN
−(s−1)|u|Hs , (3.4)

from which we conclude that convergence rate increases with the regularity of u.
In particular, if u ∈ H

s for all s, then the convergence is at least spectral; the
convergence is faster than any power of N .

Suppose now we assume that

�u− uN�H1 ≤ cN
−σ ∀N,

Let TN : H1 → XN denote the Fourier truncation operator and suppose that
w ∈ XN . Clearly, TNw = w. We have

�u− TNu�H1 = �u− w + TNw − TNu�H1

≤ �u− w�H1 + �TN(w − u)�H1

≤ (1 + �TN�H1→H1) �u− w�H1 ,

(3.5)
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while noting that �TN�H1→H1 = 1, we have

�u− TNu�H1 ≤ c inf
w∈XN

�u− w�H1 . (3.6)

In other words, TNu serves as a best approximation for u in XN . Moreover,

cN
−σ ≥ �u− uN�H1 ≥ �u− TNu�H1 ,

which makes
|u− TNu|2H1 =

�

|k|>N

|k|2|ak|2 ≤ cN
−2σ

. (3.7)

Carrying the necessary change in the index of summation we have
�

N≥1

N
2s

�

|k|>N

|k|2|ak|2 < ∞,

provided that 2s− 2σ < −1. Rearranging the previous summation,

∞�

N=1

�

|k|>N

N
2s|k|2|ak|62 =

∞�

k=−∞

k�

N=1

N
2s|k|2|ak|2

≥
�

k∈Z

|k|2s+1|k|2|ak|2 = |u|2
Hs+3/2 ,

which is finite provided that s+ 3
2 < σ + 1. We conclude the following:

�u− uN�H1 ≤ cN
−σ =⇒ u ∈ H

s ∀s < σ + 1.

To sum up,

u ∈ H
s =⇒ �u− uN�H1 ≤ cN

−(s−1) =⇒ u ∈ H
s−� ∀� > 0.

Remark. Note that argument (3.5) is not sharp but general. Furthermore, it
can be shown that the optimality constant c in (3.6) is equal to 1, meaning that
the Fourier truncation is indeed an optimal approximation in XN .

§2 Linear finite element method in 1D: an example

We now consider the approximation space XN generated by piecewise linear func-
tions. Let X = Y = H

1
0 (I) where I = (0, 1) and consider the 1-dimensional

Poisson equation with Dirichlet boundary conditions
�
−u

�� = f x ∈ (0, 1)

u(0) = u(1) = 0
(3.8)
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Consider now a partition P of (0, 1) given by

P = {x0 = 0 < x1 < · · · < xn = 1},

and define the functions space

XP = {u ∈ C(I) : u(0) = u(1) = 0, u|[xk,xk+1] ∈ P1}.

We need to compute Ajk =
�
I φ

�
j
φ
�
k
and bk =

�
I fφk. Notice that the stiffness

matrix A is tridiagonal; i.e. Ajk = 0 if |j − k| ≥ 2.

Let now uP ∈ XP be the Galerkin approximation of u from XP . We have

�u− uP�H1 ≤ c inf
v∈XP

�u− v�H1 .

Recall that H
1(I) �→ C(I) so take v = IPu where IPu denotes the piecewise

linear interpolation of u on I i.e. v(xi) = u(xi) with v ∈ XP and suppose that u
is smooth. The error function e = u− IPu satisfies e(xi) = 0 for all i. Moreover,
if a = xk and b = xk+1,

|e(x)| =
����
�

x

a

e
�(t) dt

���� ≤
�

b

a

|e�(t)| dt = (b− a)1/2�e��L2(a,b),

which makes �e�2
L2(a,b) ≤ (b − a)2�e��2

L2(a,b). By Rolle’s theorem we obtain an

analogous bound on �e��2
L2 which together with the previous,

�e�2
L2(a,b) ≤ (b− a)2�e��2

L2 ≤ (b− a)4�e���2
L2 ,

which implies

�e�2
H1(a,b) ≤ (b− a)4�e���2

L2 + (b− a)2�e���2
L2 ,

so we may write

�e�2
H1(I) =

n−1�

k=0

�e�2
H1(xk,xk+1)

≤ 2
n−1�

k=0

(xk+1 − xk)
2�e���2

L2(xk,xk+1)

= 2
n−1�

k=0

(xk+1 − xk)
2|u|2

H2(xk,xk+1)
≤ 2h2|u|H1(I),

where h = maxk(xk+1 − xk). We conclude that

�u− uP�H1 ≤ C�u− v�H1 ≤ ch|u|H2(I). (3.9)

We have assumed that u is smooth, but the result holds for u ∈ H
2(I) by density.

Remark. If the grid size is uniform, then n = 1/h which makes �u − uP�H1 ≤
cn

−1|u|H2 .
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