Lecture 3 Notes on Finite Element Methods

Lecture 3
Strictly coercive problems

In the previous lectures we have established that in the Banach space setting, a
bounded linear map A : X — Y™ is surely invertible provided it, as well as its
adjoint, are bounded below. Moreover, given a bilinear form a : X xY — R, one
can (always) characterize A through

a(x,y) = (Az,y) Ve X VyeY.

For the problem Azy = b, we seek an approximate solution, otherwise referred to
as the Galerkin approximation, we considered closed linear spaces X C X and
Y C Y and have defined the Petrov-Galerkin problem

(PG) TeX : (AZ,y) =b(y) VyeY.

If (PG) admits a solution ¥, then we have an optimality result governing the
Galerkin approximation error

. AllY .
|zo — 2| < <1 + —HAH) inf ||zg — x|
(67 reX

We will now direct our focus to the case of strictly coercive problems in which we
assume that X =Y is reflexive and that a(z,z) > al|z||* for all z € X for some
positive a. As a result, we have the following:

e A is invertible; the inf-sup conditions are satisfied.

e If we take X = Y, then we obtain the Galerkin (or Ritz-Galerkin) formu-
lation and

a = inf sup a(z, )

> a = (PG) is solvable,
s SR T

with
|zo — Z[| < Cla, |A]]) int [|zo — x|
rzeX

Remark. The constant a depends on the subspace X. However since & >a, C
does not depend on X.

81 Fourier-Galerkin method: an example

In this example we introduce the Fourier-Galerkin method. Let X =Y = H'(T)
and recall the problem in Example 4] in the previous lecture:

27
—u"+u=f inT with a(u,v):/ u'v" + uv. (3.1)
0
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We consider {¢;}xj<n comprising of sines and cosines up to frequency N and
define X = span{¢y}. Let uy € Xy be the Galerkin approximation of u from
subspace Xy. We have

lu = unllm < € inf flu— vl

Suppose now that v € H*® with s > 1 and that u = ZkeN apdr. We define an
H?-semi-norm

ulfe = k[ |ax]?, (3.2)
keN
and define the H*-norm
Jull7re = llullfz + lulZe. (3.3)

Remark. It is clear that |u|g ~ ||o/||zz.

Consider now Tyu := ZlklgN ardr € Xp; this being the Fourier truncation of .
We have,

lu =Tl = Y (lanl® + [k ax]?)

|k|>N

<2y kPlaf

|k|>N

=2 ) RIPRP ], (RS NPT, 2 - 25 <0),
|k|>N

< N2 |ul3..
We obtain the Fourier-Galerkin error estimate for ((3.1),

u — unl||g < eN~E D]y

e (3.4)

from which we conclude that convergence rate increases with the regularity of w.
In particular, if w € H?® for all s, then the convergence is at least spectral; the
convergence is faster than any power of N.

Suppose now we assume that
|lu —un|lgr <cN77 VN,

Let Ty : H' — Xy denote the Fourier truncation operator and suppose that
w € Xy. Clearly, Tyw = w. We have

lu — Tyul| g = ||lu —w + Tnw — Tyul|m
< lw = wlla + [Ty (w = w) | (3.5)
< (ATl om) llu = wl,
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while noting that || Tw|| g1 g = 1, we have

llu — Tul|g < ¢ inf ||Ju — wl|| g (3.6)
weXN

In other words, Tyu serves as a best approximation for u in Xy. Moreover,
—0
cN77 > |lu—unl|lg > |Ju—Tnul g1,

which makes
u—Tyulip = > [kPla* < N7 (3.7)

|k|>N

Carrying the necessary change in the index of summation we have

SONZDYEPlag]’ < oo,

N>1 |k|>N

provided that 2s — 20 < —1. Rearranging the previous summation,

) oo k
S Y NP = 3 3 Nl
N=1[k|>N k=—00 N=1
> Z |k|25—’—1|k5|2|ak|2 = |u ?134-3/27
keZ

which is finite provided that s + % < 0+ 1. We conclude the following:
|lu—un|lgr <cN77 = ue H Vs <o+ 1.
To sum up,
ue H* = ||lu—uy|m <N CV — uec H Ve > 0.

Remark. Note that argument (3.5 is not sharp but general. Furthermore, it
can be shown that the optimality constant ¢ in (3.6|) is equal to 1, meaning that
the Fourier truncation is indeed an optimal approximation in Xy.

82 Linear finite element method in 1D: an example

We now consider the approximation space Xy generated by piecewise linear func-
tions. Let X =Y = H}(Z) where Z = (0,1) and consider the 1-dimensional
Poisson equation with Dirichlet boundary conditions

—u'=f z€(0,1)
{u(()) =u(l) =0 (3:8)
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Consider now a partition P of (0, 1) given by
P=Azg=0<21 <<z, =1},
and define the functions space
Xp = {u€ CT) : u(0) = u(1) = 0, uli ) € P1}.

We need to compute Aj, = [, ¢¢} and by = [, féy. Notice that the stiffness
matrix A is tridiagonal; i.e. Ay = 0if |[j — k| > 2.

Let now up € Xp be the Galerkin approximation of u from Xp. We have

lu —upllg < e inf flu =l

Recall that HY(Z) < C(Z) so take v = Ipu where Ipu denotes the piecewise
linear interpolation of v on Z i.e. v(x;) = u(x;) with v € Xp and suppose that u
is smooth. The error function e = u — Ipu satisfies e(z;) = 0 for all . Moreover,
if a = 2 and b = x4,

e(z)| = /Ie'@)dt's / (1)) dt = (b — a) 2] 2(an).

which makes ||e||%2(a’b) < (b- a)2||e'||%2(a7b). By Rolle’s theorem we obtain an

analogous bound on ||¢/||7, which together with the previous,
lellZ2(ap < (0 —a)?ll€'llz2 < (b= a)*lle" ]Iz,
which implies
lell1as) < (0 —a)*lle”l[72 + (b — a)*[le”||Z,

SO we may write

n—1

n—1
HeH?ﬂ(I) - Z He”zl(zkwkﬂ) <2 Z($k+l a wk>2HeH”%2(m,mk+1)
k=0 k=0

n—1

=2 (w1 — 1) [l 0y p ) < 207 ulin @),
k=0

where h = maxy (11 — x). We conclude that
|lu —up|m < Cllu—v|m < chlu|pza). (3.9)
We have assumed that u is smooth, but the result holds for u € H?(Z) by density.

Remark. If the grid size is uniform, then n = 1/h which makes ||u — up||g <
en~ulge.
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