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§1 Necessity and sufficiency for invertibility

In this section we derive a sufficient and necessary condition for existence of an
inverse of a bounded linear map on Banach spaces. The following result, known
as Banach’s bounded inverse theorem, is an immediate consequence of the open
mapping theorem:

Let X, Y be Banach spaces and let A : X → Y be a bounded linear
map. Suppose that A is invertible, then A−1 : Y → X is also bounded.

Suppose that A is as in the context of the previous result. Then

‖x‖ = ‖A−1Ax‖ ≤ c‖Ax‖ ∀x ∈ X. (1.1)

Definition 1.1. We say that A is bounded below if ‖x‖ ≤ c‖Ax‖ for all x ∈ X
for some c > 0.

Remark. Note that if A is as such, then Ker(A) = {0}, i.e., A is injective.

It turns out that (1.1) is not sufficient to guarantee invertibility of A.

Lemma 1.2. Let X, Y be Banach spaces and let A : X → Y be bounded and
linear. A is bounded below if and only if A is injective and the range of A is
closed.

Proof. Suppose that A is bounded below and that xn ∈ X with Axn → y ∈ Y .
Then ‖xn − xm‖ ≤ c‖Axn − Axm‖ → 0 as n,m → ∞; the sequence (xn)n≥1 is
Cauchy. By completeness xn → x ∈ X and so Axn → Ax which makes y = Ax.
Therefore y belongs to the range of A.

Conversely, suppose that A : X → Ran(A) is invertible. Since Ran(A) is a
Banach space, we can use the bounded inverse theorem

‖x‖ = ‖A−1Ax‖ ≤ c‖Ax‖Ran(A) = c‖Ax‖Y .

Remark. Injectivity here can be substituted by injectivity of Ã : X/Ker(A)→ Y
to derive a condition similar to (1.1) that is necessary and sufficient for a general
(i.e., not necessarily injective) operator to have a closed range.
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In view of the preceding lemma, we need a bit more than boundedness below of
A to get invertibility.

First, we need a set of preliminary results. Define A∗ : Y ∗ → X∗ by 〈Ax, y∗〉 =
〈x,A∗y∗〉 for all x ∈ X and for all y∗ ∈ Y ∗. In other words,

X Y R
A y∗

y∗ ◦ A

which makes A∗y∗ = y∗ ◦ A. We have the following results:

• Ker(A∗) = Ran(A)⊥ because if y∗ ∈ KerA∗, then A∗y∗ = 0 and 〈Ax, y∗〉 =
〈x,A∗y∗〉 = 0 for all x ∈ X; in other words y ∈ Ran(A)⊥. On the other
hand, y ∈ Ran(A)⊥ implies 〈x,A∗y∗〉 = 0 for all x ∈ X which means
y∗ ∈ Ker(A∗).

• KerA = Ran(A∗)⊥. This holds by a similar argument made above.

• Ran(A) is closed if and only if Ran(A) = Ker(A∗)⊥. To see this, let M ⊂ X
and define its annihilator by

M⊥ = {x∗ ∈ X∗ : 〈x, x∗〉 = 0 ∀x ∈M}. (1.2)

We also define

M⊥⊥ = {x ∈ X : 〈x, x∗〉 = 0 ∀x∗ ∈M⊥}. (1.3)

Clearly M ⊂ M⊥⊥ since for all x ∈ M and for all x∗ ∈ M⊥, 〈x, x∗〉 = 0.
Now suppose that M is a closed linear space and let x /∈M . A consequence
of the Hahn-Banach theorem gives an x∗ ∈ X∗ such that x∗(x) 6= 0 and
x∗|M = 0. In other words, x∗ ∈ M⊥ which by definition makes x /∈ M⊥⊥.
It follows that M = M⊥⊥ if M ⊂ X is a closed linear space. Returning to
the claim above, Ran(A) is linear and closed so take M to be Ran(A) and
use the first point made above.

• Ran(A∗) is closed if and only if Ran(A∗) = Ker(A)⊥.

Using the previous results we have the following theorem:

Theorem 1.3. Let X, Y be Banach spaces and let A : X → Y be bounded and
linear. A is invertible if and only if A and A∗ are bounded below.

Proof. Assume that A and A∗ are bounded below. We have already proved in
Lemma 1.2 that A is injective and that Ran(A) is closed. By the third (bullet
point) result above, Ran(A) = Ker(A∗)⊥ but since A∗ is also injective, it follows
that Ran(A) = Y .
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Conversely, suppose that A is invertible, then A is bounded below by (1.1). For
below boundedness of A∗, it suffices to show that A∗ is invertible and note that
Ker(A∗) = Ran(A)⊥ = {0}. Suppose that x∗ ∈ X∗ and define y∗ ∈ Y ∗ by
〈Ax, y∗〉 = 〈x, x∗〉 for all x ∈ X; i.e. 〈y, y∗〉 = 〈A−1y, x∗〉 for all y ∈ Y . This
makes 〈x,A∗y∗〉 = 〈x, x∗〉 for all x ∈ X, equivalently, 〈y, y∗〉 = 〈y, (A−1)∗x∗〉 for
all y ∈ Y ; there exists (A∗)−1.

§2 Bilinear forms

In this section we derive the inf-sup conditions.

Let X, Y be Banach spaces and let a : X × Y → R be a bounded bilinear form.

‖a‖ = sup
x∈X

sup
y∈Y

a(x, y)

‖x‖‖y‖
<∞. (1.4)

Then we define A : X → Y ∗ by 〈Ax, y〉 = a(x, y) for all x ∈ X and for all y ∈ Y .

‖Ax‖ = sup
y∈Y

〈Ax, y〉
‖y‖

= sup
y∈Y

a(x, y)

‖y‖
≤ ‖a‖‖x‖.

The adjoint A∗ : Y ∗∗ → X∗, assuming that Y is reflexive,

〈x,A∗y〉 = 〈Ax, y〉 = a(x, y).

Observe that A is bounded below if and only if for some c > 0

‖x‖ ≤ c‖Ax‖ = c sup
y∈Y

〈Ax, y〉
‖y‖

= c sup
a(x, y)

‖y‖
,

if and only if

α := inf
x∈X

sup
y∈Y

a(x, y)

‖x‖‖y‖
> 0. (1.5)

Again, A∗ is bounded below if and only if for some c > 0

‖y‖ ≤ c‖A∗y‖ = c sup
x∈X

〈x,A∗y〉
‖x‖

= c sup
x∈X

a(x, y)

‖x‖
,

if and only if

β := inf
y∈Y

sup
x∈X

a(x, y)

‖x‖‖y‖
> 0. (1.6)

These are called the inf-sup conditions.
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Example 1. Let X = Y be reflexive with a(x, x) ≥ c‖x‖2 for c > 0.

sup
y∈X

a(x, y)

‖y‖
≥ a(x, x)

‖x‖
≥ c‖x‖.

Divide by ‖x‖ and take an infimum over X makes

inf
x∈X

sup
y∈X

a(x, y)

‖x‖‖y‖
≥ c.

This is known as the Lax-Milgram lemma. �
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