Range closedness and the inf-sup conditions 04/09/2013

Notes by Ibrahim Al Balushi

§1 Necessity and sufficiency for invertibility

In this section we derive a sufficient and necessary condition for existence of an inverse of a bounded linear map on Banach spaces. The following result, known as *Banach's bounded inverse theorem*, is an immediate consequence of the open mapping theorem:

Let X, Y be Banach spaces and let $A : X \to Y$ be a bounded linear map. Suppose that A is invertible, then $A^{-1} : Y \to X$ is also bounded.

Suppose that A is as in the context of the previous result. Then

$$||x|| = ||A^{-1}Ax|| \le c||Ax|| \quad \forall x \in X.$$
(1.1)

Definition 1.1. We say that A is bounded below if $||x|| \le c ||Ax||$ for all $x \in X$ for some c > 0.

Remark. Note that if A is as such, then $Ker(A) = \{0\}$, i.e., A is injective.

It turns out that (1.1) is not sufficient to guarantee invertibility of A.

Lemma 1.2. Let X, Y be Banach spaces and let $A : X \to Y$ be bounded and linear. A is bounded below if and only if A is injective and the range of A is closed.

Proof. Suppose that A is bounded below and that $x_n \in X$ with $Ax_n \to y \in Y$. Then $||x_n - x_m|| \le c ||Ax_n - Ax_m|| \to 0$ as $n, m \to \infty$; the sequence $(x_n)_{n\ge 1}$ is Cauchy. By completeness $x_n \to x \in X$ and so $Ax_n \to Ax$ which makes y = Ax. Therefore y belongs to the range of A.

Conversely, suppose that $A : X \to \text{Ran}(A)$ is invertible. Since Ran(A) is a Banach space, we can use the bounded inverse theorem

$$||x|| = ||A^{-1}Ax|| \le c ||Ax||_{\operatorname{Ran}(A)} = c ||Ax||_Y.$$

Remark. Injectivity here can be substituted by injectivity of $\hat{A} : X/\text{Ker}(A) \to Y$ to derive a condition similar to (1.1) that is necessary and sufficient for a general (i.e., not necessarily injective) operator to have a closed range.

In view of the preceding lemma, we need a bit more than boundedness below of A to get invertibility.

First, we need a set of preliminary results. Define $A^* : Y^* \to X^*$ by $\langle Ax, y^* \rangle = \langle x, A^*y^* \rangle$ for all $x \in X$ and for all $y^* \in Y^*$. In other words,

$$X \xrightarrow{A} Y \xrightarrow{y^*} \mathbb{R}$$

which makes $A^*y^* = y^* \circ A$. We have the following results:

- $\operatorname{Ker}(A^*) = \operatorname{Ran}(A)^{\perp}$ because if $y^* \in \operatorname{Ker} A^*$, then $A^*y^* = 0$ and $\langle Ax, y^* \rangle = \langle x, A^*y^* \rangle = 0$ for all $x \in X$; in other words $y \in \operatorname{Ran}(A)^{\perp}$. On the other hand, $y \in \operatorname{Ran}(A)^{\perp}$ implies $\langle x, A^*y^* \rangle = 0$ for all $x \in X$ which means $y^* \in \operatorname{Ker}(A^*)$.
- Ker $A = \operatorname{Ran}(A^*)^{\perp}$. This holds by a similar argument made above.
- Ran(A) is closed if and only if Ran(A) = Ker(A^{*})[⊥]. To see this, let M ⊂ X and define its annihilator by

$$M^{\perp} = \{ x^* \in X^* : \langle x, x^* \rangle = 0 \ \forall x \in M \}.$$
(1.2)

We also define

$$M^{\perp\perp} = \{ x \in X : \langle x, x^* \rangle = 0 \ \forall x^* \in M^{\perp} \}.$$

$$(1.3)$$

Clearly $M \subset M^{\perp\perp}$ since for all $x \in M$ and for all $x^* \in M^{\perp}$, $\langle x, x^* \rangle = 0$. Now suppose that M is a closed linear space and let $x \notin M$. A consequence of the Hahn-Banach theorem gives an $x^* \in X^*$ such that $x^*(x) \neq 0$ and $x^*|_M = 0$. In other words, $x^* \in M^{\perp}$ which by definition makes $x \notin M^{\perp\perp}$. It follows that $M = M^{\perp\perp}$ if $M \subset X$ is a closed linear space. Returning to the claim above, $\operatorname{Ran}(A)$ is linear and closed so take M to be $\operatorname{Ran}(A)$ and use the first point made above.

• $\operatorname{Ran}(A^*)$ is closed if and only if $\operatorname{Ran}(A^*) = \operatorname{Ker}(A)^{\perp}$.

Using the previous results we have the following theorem:

Theorem 1.3. Let X, Y be Banach spaces and let $A : X \to Y$ be bounded and linear. A is invertible if and only if A and A^* are bounded below.

Proof. Assume that A and A^* are bounded below. We have already proved in Lemma 1.2 that A is injective and that $\operatorname{Ran}(A)$ is closed. By the third (bullet point) result above, $\operatorname{Ran}(A) = \operatorname{Ker}(A^*)^{\perp}$ but since A^* is also injective, it follows that $\operatorname{Ran}(A) = Y$.

Conversely, suppose that A is invertible, then A is bounded below by (1.1). For below boundedness of A^* , it suffices to show that A^* is invertible and note that $\operatorname{Ker}(A^*) = \operatorname{Ran}(A)^{\perp} = \{0\}$. Suppose that $x^* \in X^*$ and define $y^* \in Y^*$ by $\langle Ax, y^* \rangle = \langle x, x^* \rangle$ for all $x \in X$; i.e. $\langle y, y^* \rangle = \langle A^{-1}y, x^* \rangle$ for all $y \in Y$. This makes $\langle x, A^*y^* \rangle = \langle x, x^* \rangle$ for all $x \in X$, equivalently, $\langle y, y^* \rangle = \langle y, (A^{-1})^*x^* \rangle$ for all $y \in Y$; there exists $(A^*)^{-1}$.

§2 Bilinear forms

In this section we derive the *inf-sup conditions*.

Let X, Y be Banach spaces and let $a: X \times Y \to \mathbb{R}$ be a bounded bilinear form.

$$||a|| = \sup_{x \in X} \sup_{y \in Y} \frac{a(x, y)}{||x|| ||y||} < \infty.$$
(1.4)

Then we define $A: X \to Y^*$ by $\langle Ax, y \rangle = a(x, y)$ for all $x \in X$ and for all $y \in Y$.

$$||Ax|| = \sup_{y \in Y} \frac{\langle Ax, y \rangle}{||y||} = \sup_{y \in Y} \frac{a(x, y)}{||y||} \le ||a|| ||x||.$$

The *adjoint* $A^*: Y^{**} \to X^*$, assuming that Y is reflexive,

$$\langle x, A^*y \rangle = \langle Ax, y \rangle = a(x, y)$$

Observe that A is bounded below if and only if for some c > 0

$$||x|| \le c ||Ax|| = c \sup_{y \in Y} \frac{\langle Ax, y \rangle}{||y||} = c \sup \frac{a(x, y)}{||y||},$$

if and only if

$$\alpha := \inf_{x \in X} \sup_{y \in Y} \frac{a(x, y)}{\|x\| \|y\|} > 0.$$
(1.5)

Again, A^* is bounded below if and only if for some c > 0

$$||y|| \le c ||A^*y|| = c \sup_{x \in X} \frac{\langle x, A^*y \rangle}{||x||} = c \sup_{x \in X} \frac{a(x, y)}{||x||},$$

if and only if

$$\beta := \inf_{y \in Y} \sup_{x \in X} \frac{a(x, y)}{\|x\| \|y\|} > 0.$$
(1.6)

These are called the *inf-sup conditions*.

Example 1. Let X = Y be reflexive with $a(x, x) \ge c ||x||^2$ for c > 0.

$$\sup_{y \in X} \frac{a(x, y)}{\|y\|} \ge \frac{a(x, x)}{\|x\|} \ge c \|x\|.$$

Divide by ||x|| and take an infimum over X makes

$$\inf_{x \in X} \sup_{y \in X} \frac{a(x, y)}{\|x\| \|y\|} \ge c.$$

This is known as the Lax-Milgram lemma.

 \diamond