MATH 595/597 ASSIGNMENT 1

DUE FRIDAY OCTOBER 3

1. Prove the following.

(a) If $a \in \ell^2(\mathbb{Z}^n)$ then there exists $g \in L^2(\mathbb{T}^n)$ such that

$$g = \lim_{m \to \infty} \sum_{k \in Q_m} a_k e_k,\tag{*}$$

with the convergence in $L^2(\mathbb{T}^n)$, where $Q_m = \{-m, \ldots, m\}^n$ and $e_k(x) = e^{ik \cdot x}$ for $k \in \mathbb{Z}^n$.

(b) Conversely, if $g \in L^2(\mathbb{T}^n)$ and

$$\hat{g}(k) = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} g(x) e^{-ik \cdot x} \, \mathrm{d}x = \frac{1}{(2\pi)^n} \langle g, e_k \rangle, \qquad k \in \mathbb{Z}^n,$$

then we have $\hat{g} \in \ell^2(\mathbb{Z}^n)$ and (*) holds with $a_k = \hat{g}(k)$.

2. Consider the hyperdissipative heat equation

$$u'(t) = -|D|^{\theta} u(t), \quad \text{for } t > 0,$$
 (**)

where $\theta > 0$ and the operator $|D|^{\theta}$ is given in Fourier space by $\widehat{|D|^{\theta}f}(k) = |k|^{\theta}\widehat{f}(k)$. Note that $\theta = 2$ corresponds to the standard heat equation. Let

$$u(t) = e^{-t|D|^{\theta}}g = \sum_{k \in \mathbb{Z}^n} e^{-|k|^{\theta}t} \hat{g}(k)e_k, \qquad t \ge 0,$$
(†)

where $g \in L^2(\mathbb{T}^n)$. Prove the following.

- (a) Let $u, v \in C([0,T), L^2(\mathbb{T}^n))$ with T > 0 be two functions satisfying (**) as an equality in $L^2(\mathbb{T}^n)$ for all 0 < t < T, and let u(0) = v(0). Then u = v on [0,T).
- (b) For any $s \ge 0$ and t > 0, the propagator $e^{-t|D|^{\theta}} : L^2(\mathbb{T}^n) \to H^s(\mathbb{T}^n)$ is bounded, with

$$e^{-t|D|^{\theta}}g|_{s} \leq Ct^{-s/\theta} \|g\|, \qquad g \in L^{2}(\mathbb{T}^{n}),$$

where C is a constant depending only on s and θ .

- (c) The function $u: (0, \infty) \to H^s(\mathbb{T}^n)$ given in (†) satisfies $u \in C^\infty((0, \infty), H^s(\mathbb{T}^n))$ for any $s \ge 0$.
- (d) If $g \in H^{\sigma}(\mathbb{T}^n)$ for some $\sigma \geq 0$, then $u(t) \to g$ in $H^{\sigma}(\mathbb{T}^n)$ as $t \searrow 0$. Moreover, u satisfies (**) as an equality in $H^s(\mathbb{T}^n)$ for t > 0 and $s \geq 0$.
- (e) The quantity u(t)(x), considered as a function of $(x, t) \in \mathbb{T}^n \times (0, \infty)$, is smooth.

Date: Fall 2014.

DUE FRIDAY OCTOBER 3

3. Consider the inhomogeneous hyperdissipative heat equation

$$u'(t) = -|D|^{\theta} u(t) + f(t), \quad \text{for} \quad 0 < t < T,$$
(‡)

where $\theta > 0$ and $f \in C((0,T), H^{\sigma}(\mathbb{T}^n))$ for some $\sigma \ge 0$ and $0 < T \le \infty$. We will impose the initial condition $\lim_{t \searrow 0} u(t) = g$ in $L^2(\mathbb{T}^n)$, and will understand that u' is the derivative of u considered as a function $u : (0,T) \to H^s(\mathbb{T}^n)$ for some suitable $s \ge 0$. In other words, we look for a strong H^s -solution of $\partial_t u = -|D|^{\theta}u + f$.

Prove the following.

(a) Let $u \in C([0,T), L^2(\mathbb{T}^n))$ and $f \in C((0,T), L^2(\mathbb{T}^n))$ satisfy (\ddagger) and u(0) = g. In particular, for each $t \in (0,T)$, u'(t) and $|D|^{\theta}u(t)$ both exist in $L^2(\mathbb{T}^n)$. We also assume that

$$\lim_{\varepsilon \searrow 0} \int_{\varepsilon}^{a} \|f(t)\| \, \mathrm{d}t < \infty, \qquad \text{for some} \quad 0 < a < T.$$

Then we have

$$u(t) = e^{-t|D|^{\theta}}g + \lim_{\varepsilon \searrow 0} \int_{\varepsilon}^{t} e^{(\tau-t)|D|^{\theta}} f(\tau) \,\mathrm{d}\tau, \qquad (0 < t < T),$$

where the limit $\varepsilon \to 0$ can be replaced by the evaluation $\varepsilon = 0$ if $f \in C([0,T), L^2(\mathbb{T}^n))$. In particular, (\ddagger) has uniqueness in the considered class.

(b) Let $g \in H^{\alpha}(\mathbb{T}^n)$ and let $f \in C((0,T), H^{\sigma}(\mathbb{T}^n))$, with $0 \leq \alpha \leq \sigma$. Also let

$$\lim_{\varepsilon \searrow 0} \int_{\varepsilon}^{a} \|f(t)\|_{\sigma} \, \mathrm{d}t < \infty, \qquad \text{for some} \quad 0 < a < T.$$

Then the function

$$u(t) = e^{-t|D|^{\theta}}g + \lim_{\varepsilon \searrow 0} \int_{\varepsilon}^{t-\varepsilon} e^{(\tau-t)|D|^{\theta}} f(\tau) \,\mathrm{d}\tau, \qquad (0 < t < T),$$

is in $C((0,T), H^s(\mathbb{T}^n))$ for all $\alpha \leq s < \sigma + \theta$. Furthermore, we have $\lim_{t \searrow 0} u(t) = g$ in H^{α} , and u is a strong H^s -solution of (\ddagger) for $s < \sigma$.