FOURIER-SPECTRAL METHODS FOR NAVIER STOKES
EQUATIONS IN 2D

MASHBAT SUZUKI

ABSTRACT. We implement Fourier-Spectral method for Navier-Stokes
Equations on two dimensional flat torus with Crank-Nicolson method
for time stepping. We use the vorticity stream formulation for implemen-
tation and get back velocity and pressure from the stream function. We
use our implementation to better understand the dependency on initial
condition by Navier-Stokes Equations adding small random perturba-
tion and see the difference in evolution as well as evolution of uniform

random initial data.

1. INTRODUCTION

The incompressible Navier-Stokes equation in the traditional form solving

for velocity is following

(1.1) Oru+u-Vu+ Vp = pAu

(1.2) V-u=0

where p viscosity. We derive vorticity stream function formulation of Navier-
Stokes equation in two and three dimensions by applying curl to the Navier-
Stokes equation. The following is a common way of deriving vorticity equa-
tion. First note that vorticity is defined as w = V X u, observe the following
identity

%V(u.u):(u-V)quuX(VXU)
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also note that for scalar function ¢, that V x V¢ = 0. Observe
Vx(uxw)=w- -Vu—(u-Vw+uV- -w—wV-u

where the last two terms vanish since V-w = 0 and V - u = 0. Using above

identities we can transform 1.1 to
1
8tu—|—§V(u~u) —ux (V xu)+ Vp=puAu

We can take the curl on both sides of the equation. Using the identities

previously mentioned we get the Vorticity Equation
Ow + (u-Vw — (w- V)u = pAw

It is often denoted %Tf = 0i+(u-V)w. The Vorticity equation shows that the
rate of change of the vorticity is controlled by the term reffered as vorticity
stretching term (w - V)u and by diffusion term pAw. Note that in two
dimensions u = vie, + v2ey and w = w(z,y)e, and thus (w - V)u = 0. This

gives us Two dimensional Vorticity Equation
Ow = pAw — (u - V)w

Above is the main equation we want to consider. This equation is a nonlinear
advection diffusion equation. Once we can successfully solve for vorticity we

solve for stream function v defined as
w = —Ag

and recover the velocity u = vie, + v2e, from the stream function as
v1 = Oytp andvy = —0y1).

Scaling arguments show that in the limit of very high viscosity or zero
Reynolds number the streamfunction essentially reduces to biharmonic equa-
tion of the following form

A% =0
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In this paper we will focus mainly on two dimensional vorticity equation
on T?. The vorticity streamfunction formulation is easier to implement than

more primitive variable formulation velocity.

2. DISCRETIZATION AND IMPLEMENTATION

We discretize both space and time. For space discretization of T? we use

equidistant square grid identifying both top and bottom and right and left

sides.
. . . . .
. . : . .
. . : . .
. . . . .

We use fourier-spectral method for differentiation. So we take fourier

transform of the vorticity equation which gives

(2.1) Db = —p(€2 + E2)id —u - Vw
(2.2) O = —p(&2 + E) — vy * Eetb — vy * Eyib

The right hand side of the equation (2.2) can be solved using discrite
fourier transform on the grid points. We use FFT algorithm to solve the
right hand side.

For time stepping we use the Crank-Nicolson method. For linear evolution
PDE’s this method unconditionally stable hence also thought to be good
method for some non-linear PDE’s. Crank-Nicolson method is an average
of Forward Euler and Backward Euler methods after long algebra one can

write the method in the explicit form

1 1 1 o
antl — 2 2 o — ™. - V.
wm Alt _ %M(gg + 6;) <<At + 2/~L(§x + fy)) wm uz:] wm)

We also have to take care of the aliasing problem by trowing out the fre-

quencies that are higher than 2/3 times the grid size in the convolution. We
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(A) Initial Vorticity with p = 0.005 (B) Final Vorticity with p = 0.005

FiGure 1. Evolution of vorticity with smooth initial data

were able to successfully implement above method and obtain a physically

feasible answer.

3. RESULTS AND OBSERVATIONS

We try our implementations with different initial conditions smooth, uni-
form random noise and combination of the two.

First we evolve smooth initial vorticity

(x—7+7/5)%+ (y—m+7/5)?

)_

U~)|t:0 = exp(—

0.3
r—mT—T 2 — T Vs 2
~exp( 3+ = w57
r— 7 —m/5)> — 7 —7/5)?
P J5 5

The solution is of the following initial condition is given by Figure 1. The
figure shows evolution of vorticity field with parameters p = 0.005, T' = 50
with At =0.1.

Next we add uniform random noise N ~ Unif(—1,1) to the smooth initial

data w|i—p and see the evolution of vorticity field

Wli—p = W + eN
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(A) Initial Vorticity with p = 0.005

FiGure 2. Evolution of vorticity with non-smooth initial

data w with e = 0.1
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(A) T = 50 difference of vorticity in w,w (B) T = 50 difference of speed in w, w

1

2

3

4

I

FiGURrE 3. Evolution of vorticity with non-smooth initial data w

.i

) Final Vorticity with p = 0.005

(=2}

(5]

o

L)

-

Q

5

0.25

0.2

0.15

0.1

0.05

0

0.05

From figure 2 we see that it seems that the final evolution of w is not very

different from that of w. Indeed if we plot the difference the two vorticities

the value was bounded by 2 - 1072 as seen in figure3a at time ¢ = 50 with

viscosity p = 0.005.

An unexpected result had emerged when we plotted the difference between

absolute value of velocity fields of initial vorticity field w,w as shown in

figure3b.It seems that although we added random perturbation somehow

the difference in velocity field is structured along a line.

We believe that
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(A) Initial velocity distribution (B) Final velocity distribution

FI1GURE 4. Evolution of velocity with random initial data N
with p = 0.005

this is not physical rather result of our implementation. The main reason is
that the absolute value of velocity field should not have a preferred direction
since the perturbations are random however the figure3b has a preferred
direction.

For completeness we also evolve random velocity field which is given by
figure4. Also to check the limit our implementation we have evolve random
uniform random velocity field with very low viscosity ¢ = 0.0001. Our result

is shown in figureb which is what we expect qualitatively.
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(A) Initial velocity distribution (B) Final velocity distribution

FI1GURE 5. Evolution of velocity with random initial data N
with p = 0.0001

4. ArPENDIX: MATLAB CODES

Algorithm1: Solve for vorticities at each time step, saves a frame and

stores it so that it can be played back as a movie.

clear all

%Simulation Property Setting

GridSize=128,;

Visc=0.005;

% Space Setting

h=2xpi/GridSize;
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axis=hx[1:1: GridSize];

[x,y]=meshgrid (axis , axis);

% Time Setting

FinTime=50;

dt=0.1;

t=0;

% Movie File Data Allocation Set Up

FrameRate=10;

Mov(10)=struct ( "cdata’ ,[], colormap’ ,[]) ;

% Defining Initial Vorticity Distribution

H=exp (—((x—pi+pi/5). 24+ (y—pi+pi/5)."2) /(0.3) )—exp(—((x
—pi—pi/5)."2+(y—pi+pi/5)."2) /(0.2) )+exp(—((x—pi—pi
/5)."2+(y—pi-pi/5).72) /(0.4));

% Adding Random Noise to Initial Vorticity
epsilon=0.3;
Noise=random ( "unif’ —1,1,GridSize , GridSize);
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% Note that for Low Viscosities Adding Noise to Non—
Trivial Vorticity
% Distribution results in blow up, so either do pure

noise or smooth data

w=H+tepsilonxNoise;

w_hat=fft2 (w);
WITSTSTTSo Method Begins Here YSITSTTISTISISo
kx=lixones (1,GridSize) "«(mod((1: GridSize)—ceil (
GridSize /2+1),GridSize )—floor (GridSize /2));
ky=1ix(mod ((1:GridSize)’'—ceil (GridSize/2+1),GridSize)—
floor (GridSize /2))xones (1, GridSize);
AliasCor=kx<2/3*GridSize&ky <2/3*GridSize;
Lap_hat=kx. " 2+ky." 2;
ksqr=Lap_hat; ksqr(1,1)=1;
while t<FinTime
psi_hat = —w_hat./ksqr;

9
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u =real (ifft2( ky.*xpsi_hat));

v =real (ifft2(—kx.*psi_hat));

wx=real (ifft2 ( kx.xw_hat ));

w_y=real (ifft2 ( ky.sw_hat ));

VgradW = U.*W.X + V.*xW_y;
VegradW _hat = fft2 (VgradW) ;

VgradW_hat = AliasCor.x VgradW _hat;

%Crank—Nicholson Update Method

w_hat_update= 1./(1/dt — 0.5% ViscxLap_hat).x((1/dt

+0.5% ViscxLap_hat) .xw_hat—VgradW _hat) ;

if (k=FrameRate)

w=real (ifft2 (w_hat_update));

%Vel=sqrt (u."24+v."2);

velocity

contourf(x,y,w,80);

colorbar;

%This

is

for

plotting
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shading flat; colormap(’'jet’);
drawnow
Mov (j)=getframe;
k=0;
j=i+1

end

w_hat=w_hat_update;

t=t+dt ;

k=k+1;

end

Algorithm2: Solves two equations at once one with different initial data

and computers their solutions difference at each time step,

clear all

%Simulation Property Setting

GridSize=128,;

Visc=0.005;

% Space Setting

h=2xpi/GridSize;

axis=h=*[1:1:GridSize |;

[x,y]=meshgrid (axis , axis);
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% Time Setting

FinTime=80;

dt=0.1;

t =0;

% Movie File Data Allocation Set Up

FrameRate=10;

Mov(10)=struct ('cdata’ ,[], "colormap’ ,[]);

% Defining Initial Vorticity Distribution
%[1,j]=meshgrid (1: GridSize ,1: GridSize);

w=exp (—((x—pi+pi/5). 2+ (y—pitpi/5).72) /(0.3) )—exp(—((x
—pi—pi/5). 24+ (y—pit+pi/5)."2) /(0.2) )+exp(—((x—pi—pi

/5)."24(y—pi—-pi/5)."2) /(0.4));

% Adding Random Noise to Initial Vorticity

epsilon=0.1;

Noise=random ( "unif’ —1,1,GridSize , GridSize);
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sw=w+epsilon*xNoise;

w_hat=f{ft2 (w);

sw_hat=fft2 (sw);

YISTTS TSI Method Begins Here YISTTSSTTS o

kx=lixones (1,GridSize) "*(mod((1: GridSize)—ceil (

GridSize/2+1),GridSize )—floor (GridSize /2));

ky=1ix(mod ((1:GridSize)’—ceil (GridSize/2+1),GridSize)—

floor (GridSize /2))*ones (1, GridSize);

AliasCor=kx<2/3xGridSize&ky<2/3+xGridSize ;

Lap_hat=kx."2+ky." 2;

ksqr=Lap_hat; ksqr(1,1)=1;

while t<FinTime

psi_hat = —w_hat./ksqr;

u =real(ifft2( ky.*xpsi_hat));

v =real (ifft2(—kx.xpsi_hat));
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wx=real (ifft2 ( kx.xw_hat ));

w_y=real (ifft2 ( ky.xw_hat ));

VgradW
VgradW_hat

VgradW _hat

spsi_hat =

U.*W_X + V.*xW_y;

fft2 (VgradW) ;

AliasCor .x VgradW_hat ;

—sw_hat./ksqr;

su =real (ifft2( ky.xspsi_hat));

sv =real (ifft2(—kx.xspsi_hat));

sw_x=real (ifft2 ( kx.xsw_hat ));

sw_y=real (ifft2( ky.xsw_hat ));

sVgradW
sVgradW _hat

sVgradW _hat

SU.*SW_X + SV.*xSW_Yy;

fft2 (sVgradW) ;

AliasCor.xsVgradW _hat ;

Y%Crank—Nicholson Update Method
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w_hat_update= 1./(1/dt — 0.5% ViscxLap_hat).x((1/dt
+0.5% ViscxLap_hat ) .xw_hat—VgradW _hat) ;

sw_hat_update= 1./(1/dt — 0.5% ViscxLap_hat).*((1/
dt +0.5%xViscxLap_hat).xsw_hat—sVgradW_hat) ;

if (k==FrameRate)

w=real (ifft2 (w_hat_update));

sw=real (ifft2 (sw_hat_update));

Jw=sqrt (u."24v."2); %This is for plotting

velocity
contourf (w—sw,80) ;
colorbar;
shading flat; colormap(’'jet’);

drawnow

Mov(j)=getframe;
k=0;
j=j+1

end
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w_hat=w_hat_update;

sw_hat=sw_hat_update;

t=t+dt;
k=k+1;

end
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