MATH 581 ASSIGNMENT 5

DUE TUESDAY APRIL 14, 18:00 EDT

1. Show that p is strictly hyperbolic if and only if all of its lower order perturbations are Gårding hyperbolic.
2. Consider the Cauchy problem

$$
\partial_{t} u=\sum_{k=1}^{n} A_{k} \partial_{k} u,\left.\quad u\right|_{t=0}=f
$$

where u is a vector function with m components, each A_{k} is a (possibly complex) $m \times m$ matrix, and f is a given (vector) function. We say that the problem is strongly well-posed if for any $f \in L^{2}$, there exists a solution $u \in C^{0}\left(\overline{\mathbb{R}}_{+}, L^{2}\right)$, which satisfies the estimate

$$
\|u(t)\|_{L^{2}} \leq C e^{\alpha t}\|f\|_{L^{2}}, \quad t \geq 0
$$

with some constants α and C, and u is the only solution in $C^{0}\left(\overline{\mathbb{R}}_{+}, L^{2}\right)$. In each of the following cases, prove that the corresponding Cauchy problem is strongly well-posed.
(a) Symmetric hyperbolic: All A_{k} are Hermitian.
(b) Strictly hyperbolic: For all nonzero $\xi \in \mathbb{R}^{n}$, the eigenvalues of $P(\xi)=\sum_{k=1}^{n} A_{k} \xi_{k}$ are real and distinct.
3. The Maxwell equations for 3 dimensional electromagnetism in vacuum are

$$
\begin{equation*}
\partial_{t} E=\nabla \times B, \quad \partial_{t} B=-\nabla \times E \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \cdot E=0, \quad \nabla \cdot B=0 \tag{2}
\end{equation*}
$$

where $E, B: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ are the electric and magnetic fields, respectively. Show that the system (1) is symmetric hyperbolic. Then show that the constraints (2) are preserved by the evolution, i.e., that if one starts with initial data satisfying the constraints (2), and if E and B evolve according to (1), then (2) will be satisfied for all time.
4. Prove the strong well-posedness of the Cauchy problem for the system

$$
\begin{aligned}
& \partial_{t} u=P(\partial) u+Q(\partial) v \\
& \partial_{t} v=H(\partial) v+M u
\end{aligned}
$$

where u and v are vector functions, $P(\partial)$ is a second order parabolic operator, $Q(\partial)$ is an arbitrary first order operator, $H(\partial)$ is a first order symmetric hyperbolic operator, and M is simply a matrix (i.e., a zeroth order operator). The operators $P(\partial), Q(\partial)$, and $H(\partial)$ may contain lower order terms, and the spatial dimension is n.

