MATH 581 ASSIGNMENT 4

DUE FRIDAY MARCH 13

- 1. For $u \in \mathscr{D}'$ and $v \in \mathscr{E}'$, prove the following.
 - (a) $\operatorname{sing supp}(u * v) \subset \operatorname{sing supp}(u) + \operatorname{sing supp}(v)$.
 - (b) $WF(u * v) = \{(x + y, \xi) : (x, \xi) \in WF(u) \text{ and } (y, \xi) \in WF(v)\}.$
- 2. Compute, as explicitly as you can, the fundamental solutions E^{\pm} of the wave operator $\Box = \partial_n^2 - \partial_1^2 - \ldots - \partial_{n-1}^2$, satisfying $\sup E^{\pm} \subset \overline{\mathbb{R}^n_{\pm}}$. Note that these fundamental solutions are unique, since $\sup \delta \subset \overline{\mathbb{R}^n_+}$ and $\sup \delta \subset \overline{\mathbb{R}^n_-}$. Determine $WF(E^{\pm})$.
- 3. Let $u \in \mathscr{D}'$ be a solution of $\Box u = 0$. Show that if

$$Q_0 = (x_0, t_0, \xi_0, \tau_0) \in WF(u),$$

then $\tau_0 = \pm |\xi_0|$ and

$$Q_s = (x_0 \pm \frac{\xi_0}{|\xi_0|} s, t_0 + s, \xi_0, \tau_0) \in WF(u)$$

for all small values of $s \in \mathbb{R}$. Note that $Q_0 \mapsto Q_s$ is the Hamiltonian flow (i.e., bicharacteristic strip) corresponding to the symbol of \Box . *Hint*: Consider $\phi \in \mathscr{D}$ with $\phi \equiv 1$ near $(x_0, t_0) \in \mathbb{R}^n$, and invoke $\phi u = E^{\pm} * (\Box(\phi u))$.

- 4. Let $P(D) = [p_{jk}(D)]$ be a square matrix consisting of constant coefficient linear partial differential operators. Show that P(D) admits a fundamental matrix supported in a cone C satisfying $C \cap \overline{\mathbb{R}^n} = \{0\}$ if and only if the scalar operator det P(D) is hyperbolic in the sense of Gårding. *Hint*: The cofactor matrix.
- 5. For $s \in \mathbb{R}$, the (Bessel potential) Sobolev space $H^s(\mathbb{R}^n)$ is the set of those $u \in \mathscr{S}'(\mathbb{R}^n)$ with $||u||_{H^s} := ||\langle D \rangle^s u||_{L^2} < \infty$, where the Bessel potential $\langle D \rangle^s u$ of u is defined by

$$\widehat{D}\rangle^{su}(\xi) = \langle \xi \rangle^{s} \widehat{u}(\xi) \equiv (1 + |\xi|^2)^{s/2} \widehat{u}(\xi).$$

Prove the following.

- (a) $\langle D \rangle^s : H^s(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is a Hilbert space isometry.
- (b) For $k \ge 0$ integer, $H^k(\mathbb{R}^n) = W^{k,2}(\mathbb{R}^n)$.
- (c) $\mathscr{D}(\mathbb{R}^n)$ is dense in $H^s(\mathbb{R}^n)$.
- (d) The (topological) dual of $H^{s}(\mathbb{R}^{n})$ is isometric to $H^{-s}(\mathbb{R}^{n})$.
- (e) The trace operator $\gamma : \mathscr{D}(\mathbb{R}^n) \to \mathscr{D}(\mathbb{R}^{n-1})$ defined by

$$(\gamma u)(x_1,\ldots,x_{n-1}) = u(x_1,\ldots,x_{n-1},0),$$

has a unique extension to a bounded linear operator $\gamma: H^s(\mathbb{R}^n) \to H^{s-\frac{1}{2}}(\mathbb{R}^{n-1}).$

Date: Winter 2020.