MATH 581 ASSIGNMENT 3

DUE FRIDAY FEBRUARY 28

1. Let $u \in \mathscr{E}'(\mathbb{R}^n)$ satisfy $p(\partial)u = 0$ in a bounded domain $\Omega \subset \mathbb{R}^n$, and let $E \in \mathscr{D}'(\mathbb{R}^n)$ be a fundamental solution of $p(\partial)$. Pick an arbitrary $y \in \Omega$, and consider the ball $B = B_r(y) \subset \Omega$ with r > 0 small. We want to express $u|_B$ in terms of the values of unear the boundary $\partial\Omega$, generalizing the Green formulas. Let $U \subset \mathbb{R}^n$ be an open set containing the origin, and let $\zeta \in \mathscr{D}(U + B_{\varepsilon})$ be a cut-off function with $\zeta \equiv 1$ in U, with $\varepsilon > 0$ small. Prove the representation formula

$$u = K * u \qquad \text{in } B,$$

where $K = p(\partial)[(1 - \zeta)E]$, and we have assumed that $B - (U + B_{\varepsilon}) \subset \Omega$. Prove also the following.

- (a) If u = 0 in a neighbourhood of $\partial \Omega$, then u = 0 in Ω . *Hint*: What is supp K?
- (b) If u is smooth in a neighbourhood of $\partial \Omega$, then u is smooth in Ω .
- 2. Does there exist a Gevrey hypoelliptic operator of exponent m, for every natural number m? Give an explicit example when there is one.
- 3. Recall that by Hörmander's theorem, p(D) is hypoelliptic if and only if for any $\eta \in \mathbb{R}^n$ one has $p(\xi + i\eta) \neq 0$ for all sufficiently large $\xi \in \mathbb{R}$.
 - (a) Construct a non-hypoelliptic polynomial p in dimension n > 1 such that $|p(\xi)| \to \infty$ as $|\xi| \to \infty$ for $\xi \in \mathbb{R}^n$.
 - (b) For any given c > 0, construct a non-hypoelliptic polynomial p in dimension n > 1such that $|p(\xi + i\eta)| \to \infty$ uniformly in $\{|\eta| \le c\}$ as $|\xi| \to \infty$ for $\xi \in \mathbb{R}^n$.
- 4. In this exercise we will refine the hypoellipticity and microlocal regularity theorems we have seen in class. First we localize the notion of Sobolev regularity in space and frequency. With $\Omega \subset \mathbb{R}^n$ a domain, let $u \in \mathscr{D}'(\Omega)$, and let $(x_0, \xi_0) \in \Omega \times \mathbb{R}_n^{\times}$, where $\mathbb{R}_n^{\times} = \mathbb{R}^n \setminus \{0\}$. We write $u \in H^s(x_0)$ if there is $\phi \in \mathscr{D}(\Omega)$ with $\phi(x_0) \neq 0$ such that $\phi u \in H^s(\mathbb{R}^n)$. Similarly, we write $u \in H^s(x_0, \xi_0)$ if there is $\phi \in \mathscr{D}(\Omega)$ with $\phi(x_0) \neq 0$, and there is a conical neighbourhood V of ξ_0 such that $(1 + |\cdot|)^s \widehat{\phi u}$ is square integrable in V. With these localizations at hand, we define the singular support

sing supp^s(u) =
$$\Omega \setminus \{x \in \Omega : u \in H^{s}(x)\},\$$

and the wave front set

$$WF^{s}(u) = \Omega \times \mathbb{R}_{n}^{\times} \setminus \{(x,\xi) : u \in H^{s}(x,\xi)\},\$$

adapted to Sobolev regularity. Prove the following.

Date: Winter 2020.

(a) Let p be a polynomial of degree m in \mathbb{R}^n , satisfying

$$|\xi|^{\gamma} \lesssim \mu_p(\xi), \qquad \xi \in \mathbb{R}^n,$$

for some constant $0 < \gamma \leq 1$, where

$$\mu_p(\xi) = \inf\{|\eta| : p(\xi + i\eta) = 0, \, \eta \in \mathbb{R}^n\}.$$

Then

sing supp<sup>*s*+
$$\gamma m$$</sup>(*u*) \subset sing supp^{*s*}(*p*(*D*)*u*), $u \in \mathscr{D}'(\Omega)$.

(b) Let P be a differential operator of order m with smooth coefficients in Ω . Then

$$\operatorname{WF}^{s+m}(u) \subset \operatorname{Char} P \bigcup \operatorname{WF}^{s}(Pu), \quad u \in \mathscr{D}'(\Omega).$$

 $\mathbf{2}$