
AN ELEMENTARY INTRODUCTION TO DISTRIBUTIONS

TSOGTGEREL GANTUMUR

Abstract. Textbooks on PDE usually introduce distributions as linear functionals satisfy-
ing certain properties, without saying much about where those conditions come from. The
reason is that it would become a book by itself if one starts with the general setting of
topological vector spaces. We take here an intermediate approach, that regards families of
seminorms on vector spaces as the primary objects to generate topologies.
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1. Introduction

It is well known that differentiation of functions is not a well behaved operation. For
instance, continuous, nowhere differentiable functions exist. The derivative of an integrable
function maybe not locally integrable. A related difficulty is that if a sequence fk converges to
some function f pointwise or uniformly, then in general it is not true that f ′k converges to f ′ in
the same sense. In order to use differentiation freely, one has to restrict to a class of functions
that are many times differentiable, and in the extreme this process leads us to smooth and
analytic classes. The latter classes alleviate the aforementioned difficulties somewhat, but
they are too small and cumbersome for the purposes of studying PDEs. The idea behind
distributions is that instead of restricting ourselves to a small subclass of functions, we should
expand the class of functions to include hypothetical objects that are derivatives of ordinary
functions. This will force us to extend the notion of functions, a process that is not dissimilar
to extending the reals to complex numbers. The analogy can be pushed a bit further, in
that by using distributions, we end up revealing deep and hidden truths even about ordinary
functions that would otherwise be difficult to discover or could not be expressed naturally in
the language of functions. A precise formulation of the theory of distributions was given by
Laurent Schwartz during 1940’s, with some crucial precursor ideas by Sergei Lvovich Sobolev.
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To explain what distributions are, we start with a continuous function u ∈ C(R) defined on
the real line R. Let Ckc (R) denote the space of k-times continuously differentiable functions
with compact support, and define

Tu(ϕ) =

∫
uϕ, ϕ ∈ Ckc (R). (1)

We required ϕ to be compactly supported so that the above integral is finite for any continuous
function u. It is clear that Tu is a linear functional acting on the space Ckc (R). Moreover,
this specifies u uniquely, meaning that if there is some v ∈ C(R) such that Tu(ϕ) = Tv(ϕ)
for all ϕ ∈ Ckc (R), then u = v. If we replace the space C(R) by the space L1

loc(R) of locally
integrable functions, the conclusion would be that u = v almost everywhere, which of course
means that they are equal as the elements of L1

loc(R). So we can regard ordinary functions as

linear functionals on Ckc (R). Then the point of departure now is to consider linear functionals
that are not necessarily of the form (1) as functions in a generalized sense. For example, the
Dirac delta, which is just the point evaluation

δ(ϕ) = ϕ(0), ϕ ∈ Ckc (R), (2)

is one such functional. In order to differentiate generalized functions, let us note that

Tu′(ϕ) =

∫
u′ϕ = −

∫
uϕ′ = −Tu(ϕ′), ϕ ∈ Ckc (R), (3)

for any differentiable function u, and then make the observation that the right hand side
actually makes sense even if u was just a continuous function. This motivates us to define the
derivative of a generalized function T by

T ′(ϕ) := −T (ϕ′), ϕ ∈ Ckc (R). (4)

If we want to get more derivatives of T , we need k to be large, which leads us to consider the
space C∞c (R) of compactly supported smooth functions as the space on which the functionals
T act. This space is called the space of test functions. A distribution (on R) is simply a
continuous linear functional on C∞c (R), the latter equipped with a certain topology. In order
to describe this topology, we need some preparation.

2. Locally convex spaces

In this section, we will discuss how to introduce a topology on a vector space by using a
family of seminorms.

Definition 1. A function p : X → R on a vector space X is called a seminorm if

i) p(x+ y) ≤ p(x) + p(y) for x, y ∈ X, and
ii) p(λx) = |λ|p(x) for λ ∈ R and x ∈ X.

It is called a norm if in addition p(x) = 0 implies x = 0.

The property i) is subadditivity or the triangle inequality, and ii) is positive homogeneity.

Lemma 2. Let p be a seminorm on a vector space X. Then we have

a) p(0) = 0,
b) p(x) ≥ 0,
c) |p(x)− p(y)| ≤ p(x− y), and
d) {x ∈ X : p(x) = 0} is a linear space.

Proof. Part a) follows from positive homogeneity with λ = 0. Then we have

0 = p(0) = p(x− x) ≤ p(x) + p(−x) = p(x) + p(x), (5)
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which gives b). While c) is obvious, d) is a consequence of

0 ≤ p(αx+ βy) ≤ |α|p(x) + |β|p(y), (6)

for α, β ∈ R and x, y ∈ X. �

Let X be a vector space, and let P be a family of seminorms on X. Then given a finite
collection p1, . . . , pk ∈P and given ε > 0, let us call the set

By,ε(p1, . . . , pk) = {x ∈ X : pi(x− y) < ε, i = 1, . . . , k}, (7)

the semiball of radius ε, centred at y, corresponding to the seminorms p1, . . . , pk.

Definition 3. Let X be a vector space, and let P be a family of seminorms on X. Then
we define a topology on X by calling A ⊂ X open if for any x ∈ A, there exists a semiball
Bx,ε(p1, . . . , pk) ⊂ A with p1, . . . , pk ∈ P and ε > 0. We say that (X,P) is a locally convex
space (LCS).

The open sets in (X,P) are precisely those which are the unions of semiballs. It is easy to
verify that X itself is open, intersection of any two open sets is open, and that the union of
any collection of open sets is open. The empty set is open, because any element of the empty
set, of which there is none, satisfies any desired property. Therefore the preceding definition
indeed defines a topology on X, making it a topological space. Note also that the topology
on X does not change if we replace a seminorm p ∈ P by another seminorm p′ satisfying
p(x) ≤ cp′(x) for x ∈ X and for some constant c > 0.

Remark 4. The reason we called X a locally convex space is that it agrees with the same
notion from the theory of topological vector spaces. A topological vector space is a vector
space which is also a topological space, with the property that the vector addition and scalar
multiplication are continuous. Then a topological vector space X is called locally convex if
A ⊂ X is open and if x ∈ A then there is a convex open set C ⊂ A containing x. We
choose not to go into details here, and use families of seminorms as primary objects to specify
topological properties of X. This simplifies presentation and gives a quicker way to achieve
our aim, and moreover does not lose generality, because of the (nontrivial) fact that any
locally convex topological vector space has a family of seminorms that induces its topology.

Recall that a sequence {xk} ⊂ X is said to converge to x ∈ X if for any open set ω ⊂ X
containing x, we have xk ∈ ω for all large k. In terms of seminorms, this is equivalent to
saying that p(xk − x)→ 0 for any p ∈P.

Lemma 5. a) Let Y be a normed space, and let X be as above. Then a function f : X → Y is
continuous if and only if for any x ∈ X and any ε > 0, there is a finite collection p1, . . . , pk ∈
P and δ > 0 such that

z ∈ Bx,δ(p1, . . . , pk) ⇒ ‖f(x)− f(z)‖Y ≤ ε. (8)

b) In addition to what has been assumed, suppose that f is linear. Then f is continuous if
and only if there is a finite collection p1, . . . , pk ∈P and a constant C > 0 such that

‖f(x)‖Y ≤ C max
i
pi(x), x ∈ X. (9)

Proof. Recall that a map is called continuous if the preimage of any open set is open. Suppose
that f is continuous. Then for any ε > 0 and y = f(x) with x ∈ X, the preimage of By,ε ⊂ Y
contains a semiball Bx,δ(p1, . . . , pk) with δ = δ(ε, x) > 0. In the other direction, let U ⊂ Y
be open and let x ∈ f−1(U). Then with y = f(x) ∈ U , there exist a nonempty ball By,ε ⊂ U ,
and a nonempty semiball Bx,δ(p1, . . . , pk) such that f(Bx,δ(p1, . . . , pk)) ⊂ By,ε. This means
that f−1(U) is open.
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For b), the condition associated to (9) immediately implies the condition associated to (8)
by linearity. Now suppose that we have the condition associated to (8). Hence there is δ > 0
and p1, . . . , pk ∈P such that

z ∈ B0,δ(p1, . . . , pk) ⇒ ‖f(z)‖Y ≤ 1. (10)

Note that z ∈ B0,δ(p1, . . . , pk) is equivalent to p(z) := maxi pi(z) < δ. Let x ∈ X, and define

z = δ
2p(x)x. Then we have p(z) = δ

2 < δ, leading to

1 ≥ ‖f(z)‖Y =
δ

2p(x)
‖f(x)‖Y , (11)

which is (9) with C = 2
δ . �

Remark 6. The preceding lemma can easily be extended to the case where Y is a LCS
endowed with a family Q of seminorms. For instance, part b) would read: f is continuous iff
for any q ∈ Q, there is a finite collection p1, . . . , pk ∈P and a constant C > 0 such that

q(f(x)) ≤ C max
i
pi(x), x ∈ X. (12)

Notice how the quantifiers differ on the domain and the range of the function. If X ⊂ Y
as sets, by taking f : X → Y to be the inclusion map f(x) = x we derive the following
criterion: the embedding X ⊂ Y is continuous iff for any q ∈ Q, there is a finite collection
p1, . . . , pk ∈P and a constant C > 0 such that

q(x) ≤ C max
i
pi(x), x ∈ X. (13)

Remark 7. Part b) of Lemma 5 is valid for checking continuity of seminorms q : X → R,
because of their positive homogeneity and the property in Lemma 2c). So a seminorm q on
(X,P) is continuous iff there is a finite collection p1, . . . , pk ∈P and a constant C > 0 such
that

q(x) ≤ C max
i
pi(x), x ∈ X. (14)

Comparing this with the previous remark, we conclude that the embedding X ⊂ Y is contin-
uous iff the restriction of every seminorm of (Y,Q) to X is continuous on (X,P).

Definition 8. Let (X,P) be a locally convex space. We define the following notions.

• {xk} is Cauchy if for any p ∈P, p(xj − xk)→ 0 as j, k →∞.
• A ⊂ X is bounded if for any p ∈P, supx∈A p(x) <∞.

A straightforward but useful observation is that every Cauchy sequence is bounded. Indeed,
if {xk} is Cauchy then, with an arbitrary p ∈P, for a sufficiently large j we have p(xj−xk) < 1
hence p(k) < p(j) + 1 for all k ≥ j.

Definition 9. The family P of seminorms on X is called separating if for any x ∈ X \ {0},
there exists p ∈P such that p(x) 6= 0.

The significance of this is that if (X,P) is a LCS with P separating, then the topology
of X is Hausdorff, meaning that for any x, y ∈ X distinct, there are open sets A ⊂ X and
B ⊂ X with x ∈ A and y ∈ B. Indeed, let p ∈ P be such that δ := p(x − y) > 0. Then
A = {z ∈ X : p(z − x) < δ

2} and B = {z ∈ X : p(z − y) < δ
2} satisfy the desired properties.

Theorem 10. A locally convex space (X,P) is metrizable if P is countable and separating.

Proof. Let P = {p1, p2, . . .}, and let {αk} be a sequence of positive numbers satisfying αk → 0.
Then we claim that

d(x, y) = max
k

αkpk(x− y)

1 + pk(x− y)
, (15)



AN ELEMENTARY INTRODUCTION TO DISTRIBUTIONS 5

defines a metric that induces the topology of X. First observe that the maximum is well-
defined, since pk/(1 + pk) < 1 and αk → 0. Also, because αk > 0 for all k, d(x, y) = 0 implies
pk(x − y) = 0 for all k, which then gives x = y by the separating property. The triangle
inequality for d follows from the elementary fact

a ≤ b+ c ⇒ a

1 + a
≤ b

1 + b
+

c

1 + c
(a, b, c ≥ 0), (16)

which can easily be verified, e.g., by contradiction.
For each k, we have

pk(x− y)

1 + pk(x− y)
≤ d(x− y), (17)

which tells us that any semiball contains a metric ball. To get the other direction, let ε > 0,
and let n be an index such that αk < ε for all k > n. Then we have

d(x− y) ≤ ε+ max
1≤k≤n

αkpk(x− y)

1 + pk(x− y)
≤ ε+ α max

1≤k≤n
pk(x− y), (18)

where α = maxαk. This means that the semiball Bx,ε(p1, . . . , pn) is contained in the metric
ball B(1+α)ε(x) = {y ∈ X : d(x− y) < (1 + α)ε}. �

Remark 11. In fact, the converse statement is also true: If (X,P) is metrizable then P is
countable and separating. For a proof, we refer to Walter Rudin’s Functional analysis.

3. Examples of Fréchet spaces

In this section, we study some important examples of Fréchet spaces, which will serve as
stepping stones to test functions and distributions.

Definition 12. A Fréchet space is a locally convex space that is metrizable with a complete,
translation invariant metric.

An equivalent definition can be obtained from the fact that a locally convex space is metriz-
able if and only if its topology is induced by a countable and separating family of seminorms.

Let us recall the multi-index notation, which is a convenient shorthand notation for partial
derivatives and multivariate polynomials. A multi-index is a vector α = (α1, . . . , αn) ∈ Nn0
whose components are nonnegative integers. Then we use

xα = xα1
1 . . . xαnn , and ∂α = ∂α1

1 . . . ∂αnn , (19)

for multivariate monomials and partial derivatives. The length of a multi-index α is defined
as |α| = α1 + . . .+ αn, which corresponds to the total degree of a monomial or the order of a
differential operator.

Given an arbitrary set A ⊂ Rn, let C(A) be the space of continuous functions on A. That
is, u ∈ C(A) iff

u(x) = lim
A3y→x

u(y), for all x ∈ A. (20)

If A is compact, all functions in C(A) are bounded, which is not the case if A is open.
Generalizing C(A), we let Cm(A) be the space of functions all of whose m-th order partial
derivatives are continuous on A. In particular, C0(A) = C(A). The space of infinitely
differentiable functions (i.e., smooth functions) on A is defined as

C∞(A) =
⋂
m

Cm(A). (21)

Remark 13. An often used alternative notation is E (Ω) = C∞(Ω) and Em(Ω) = Cm(Ω).
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Let K ⊂ Rn be a compact set. Then C(K) has the natural Banach space topology induced
by the uniform norm

‖u‖C(K) = sup
x∈K
|u(x)|, u ∈ C(K). (22)

Moreover, the space Cm(K) is a Banach space with the norm

‖u‖Cm(K) = max
|α|≤m

‖∂αu‖C0(K), u ∈ Cm(K). (23)

We equip C∞(K) with the family {pm : m = 0, 1, . . .} of seminorms

pm(ϕ) = ‖ϕ‖Cm(K), m = 0, 1, . . . , u ∈ C∞(K). (24)

Lemma 14. The space C∞(K) is metrizable and complete, i.e., it is a Fréchet space.

Proof. The space C∞(K) is metrizable by Theorem 10, since {pm} is countable and separating.
Let {ϕk} be a Cauchy sequence in C∞(K). This means that {ϕk} is Cauchy in Cm(K) for
each m. Hence by completeness of Cm(K), for each m there exists ψm ∈ Cm(K) such that
pm(ϕk −ψm)→ 0 as k →∞. Since p0(ψ) ≤ pm(ψ) for any ψ ∈ Cm(K), we have ψm = ψ0 for
any m. We conclude that ψ0 ∈ C∞(K) and that ϕk → ψ0 in C∞(K) as k →∞. �

Next we turn to function spaces defined on open sets. Let Ω ⊂ Rn be an open set. We
equip C(Ω) with the topology of locally uniform convergence, i.e., the topology induced by
the seminorms

pK(ϕ) = ‖ϕ‖C(K), (25)

where K runs over the compact subsets of Ω. That this topology is metrizable can be seen as
follows. Suppose that K1 ⊂ K2 ⊂ . . . ⊂ Ω are compact sets and

⋃
jKj = Ω. Such a sequence

{Kj} can be constructed easily, for instance, by

Kj = {x ∈ Ω : dist(x, ∂Ω) ≥ 1

j
} ∩Bj , (26)

where
Bj = {x ∈ Rn : |x| < j}, (27)

is the open ball of radius j, centred at the origin. Obviously, if K ⊂ Ω is compact, then
K ⊂ Kj for some j. Hence pK(ϕ) ≤ pKj (ϕ) for all ϕ ∈ C(Ω), meaning that we can use the
family {pKj : j = 1, 2, . . .} to generate the topology of C(Ω). This family is countable and
separating, and metrizability follows. Introducing the seminorms

pj,k(ϕ) = ‖ϕ‖Ck(Kj), (28)

we topologize Cm(Ω) by {pj,m : j ∈ N}, and topologize C∞(Ω) by {pj,k : j, k ∈ N}.

Lemma 15. Let 0 ≤ m ≤ ∞. Then Cm(Ω) is a Fréchet space.

Proof. The proof is similar to the proof of Lemma 14. Let {ϕi} be a Cauchy sequence in
Cm(Ω). Then by completeness of Cm(Kj), for each j there exists ψj ∈ Cm(Kj) such that

ϕi → ψj in Cm(Kj) as i → ∞. Since pj,k(ψ) ≤ pj+1,k(ψ) for any ψ ∈ Ck(Kj+1) and any
j and k, we have ψj = ψj+1|Kj for any j. This means that the function ψ defined on Ω by
ψ(x) = ψj(x) if x ∈ Kj \ Kj−1, with the convention K0 = ∅, will satisfy ψ ∈ Cm(Ω) and
ψ|Kj = ψj for all j. So by construction, pj,k(ϕi −ψ)→ 0 as i→∞ for any j and any k, with
the restriction k ≤ m if m <∞. �

Similarly to the construction of Cm(Ω), we can introduce local versions of Lp-spaces, as

Lploc(Ω) = {u : Ω→ R measurable, u|K ∈ Lp(K) for any compact K ⊂ Ω}. (29)

Here we assume 1 ≤ p ≤ ∞, and equip it with the seminorms

qj(ϕ) = ‖ϕ‖Lp(Kj). (30)
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Relying on the completeness of Lp(K), one can easily show that Lploc(Ω) is a Fréchet space.
We end this section by considering function spaces with restrictions on where a function

can be nonzero. If ϕ : Ω→ R is a continuous function, we define its support as

suppϕ = {x ∈ Ω : ϕ(x) 6= 0}. (31)

Note that x ∈ Ω is in suppϕ if and only if x has no open neighbourhood on which ϕ vanishes.
For K ⊂ Rn compact, we define the space

DK = {ϕ ∈ C∞(Rn) : suppϕ ⊂ K}, (32)

and endow it with the seminorms

pm(ϕ) = ‖ϕ‖Cm , m = 0, 1, . . . . (33)

Note that this topology is the one induced by the embedding DK ⊂ C∞(K).
The question arises if there exists any infinitely differentiable function with compact sup-

port. This is something we should check since a nonzero analytic function cannot have compact
support, and being smooth is apparently only slightly weaker than being analytic. We claim
that the function ϕ on Rn defined by

ϕ(x) =

{
e−1/(1−|x|2) for |x| < 1,

0 for |x| ≥ 1,
(34)

is in C∞(Rn). It is clear that ϕ(x)→ 0 as |x| ↗ 1. As for the derivatives, we have

∂αϕ(x) =
p(x)e−1/(1−|x|2)

(1− |x|2)|α|
, |x| < 1, (35)

where p is some polynomial. From this it is also clear that ∂αϕ(x) → 0 as |x| ↗ 1. So
ϕ ∈ C∞(Rn). If K contains an open ball, we can fit infinitely many open balls inside K.
Then scaling and translating ϕ, we can place them in K so that their supports are contained
in K and do not intersect with each other. This implies that DK is infinite dimensional. The
space DK is also Fréchet, since it is a closed subspace of C∞(K).

For any integer m ≥ 0 we can also introduce

Dm
K = {ϕ ∈ Cm(Rn) : suppϕ ⊂ K}, (36)

and endow it with the subspace topology inherited from Cm(K). Then Dm
K is a closed subspace

of Cm(K).

4. The inductive limit topology

In this section, we will establish some basic properties of the so-called inductive limit
topology on the space of test functions.

Definition 16. Let Ω ⊂ Rn be an open set. Then we define the space of test functions by

D(Ω) =
⋃
KbΩ

DK , (37)

where we used the notation K b Ω to mean that K is compact and is a subset of Ω.

Note that if K1 ⊂ K2 ⊂ . . . ⊂ Ω are compact sets and
⋃
mKm = Ω, then

D(Ω) =
⋃
m

DKm . (38)

We have discussed a construction of such a sequence in the preceding section.
Our next task is to introduce a topology on D(Ω). In doing so, we want the inclusions

DK ⊂ D(Ω) to be continuous. This means, by Remark 6 that for every seminorm p from
(D(Ω),P), where P is the hypothetical family inducing a topology on D(Ω), the restriction
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p|DK must be continuous on DK . The family P = {pm} has the desired property, but the
following remark shows that it would not be a very convenient choice.

Remark 17. D(Ω) is not complete with respect to the topology induced by {pm}. We
illustrate it in the case Ω = R. Take a nonzero function ϕ ∈ D(R) whose support is small and
concentrated near 0, and consider the sequence

ϕk(x) = ϕ(x) + 2−1ϕ(x− 1) + . . .+ 2−kϕ(x− k), k = 1, 2, . . . . (39)

Obviously, this sequence is Cauchy with respect to the family {pm}, but the support of the
limit function is not compact.

This failure indicates that the family {pm} has not enough seminorms to prevent Cauchy
sequences from “leaking” towards the boundary of Ω. So we can add more seminorms to the
family, and hope that things get better. Having a large family of seminorms will have the
added benefit that it becomes easier for a function f : D(Ω)→ Y to be continuous, meaning
that we will have a large supply of continuous functions on D(Ω). Of course there is a limit in
expanding the family P because of the aforementioned requirement that p|DK be continuous.
These two competing requirements give rise to a unique family P as follows.

Definition 18. We define the collection P of seminorms on D(Ω) by the condition that a
seminorm p on D(Ω) is in P iff p|DK is continuous for each compact K ⊂ Ω.

The topology generated by P on D(Ω) is called the inductive limit topology. Looking back,
this topology is completely natural, given that D(Ω) is the union of {DK : K b Ω}, and that
each DK has its own topology.

Remark 19. In general, if X1 ⊂ X2 ⊂ . . . are locally convex spaces, then the inductive limit
topology on the union X =

⋃
j Xj is the finest topology that leaves the embeddings Xj → X

continuous. If each of the spaces Xj is Fréchet, we call the resulting space X an LF space. If
each Xj is Banach, we call X an LB space.

Lemma 20. The topology of DK is exactly the one induced by the embedding DK ⊂ D(Ω).

Proof. Let A ⊂ D(Ω) be open and let K ⊂ Ω be compact. We will show that A∩DK is open
in DK . Let ψ ∈ A ∩ DK . Let us denote the semiballs in DK by Bψ,ε(pm; DK) etc., and the
semiballs in D(Ω) by Bψ,ε(p) etc. Then there exists p ∈P such that Bψ,ε(p) ⊂ A with ε > 0.
By construction, there exists pm such that p ≤ cpm on DK , with some constant c > 0. Hence
Bψ,ε/c(pm,DK) ⊂ Bψ,ε(p) ∩DK ⊂ A ∩DK , showing that A ∩DK is open in DK .

On the other hand, since {pm} ⊂ P, any semiball Bψ,ε(pm; DK) in DK is equal to the
intersection of the semiball Bψ,ε(pm) in D(Ω) with DK , i.e.,

Bψ,ε(pm; DK) = Bψ,ε(pm) ∩DK . (40)

This immediately implies that any open set in DK can be written as the intersection of an
open set of D(Ω) with DK . �

Let us ask the question: Does P have any seminorm that is not one of {pm}? An example
of such a seminorm is given by

p(ϕ) = sup
j
cj |ϕ(xj)|, ϕ ∈ D(Ω), (41)

where {xj} ⊂ Ω is a sequence having no accumulation points in Ω, and {cj} is a sequence
of positive numbers. We can easily check that p is a seminorm, and that p|DK is continuous
on DK for any compact K ⊂ Ω, so that p ∈ P. Seminorms such as this give a very strong
control near the boundary of Ω, because {xj} concentrate towards the boundary and cj can
grow arbitrarily fast. The following result illustrates this phenomenon.
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Theorem 21. The set A ⊂ D(Ω) is bounded if and only if there is a compact set K ⊂ Ω
such that A ⊂ DK and that A is bounded in DK . Recall that the latter means that each pm is
bounded on A.

Proof. Suppose that A is bounded in DK for some compact set K ⊂ Ω. We claim that
continuity of the embedding DK ⊂ D(Ω) implies that A is also bounded in D(Ω). To prove
it, let p ∈P. Then there is pm such that

p(ϕ) ≤ Cpm(ϕ), ϕ ∈ DK . (42)

By assumption, pm(ϕ) ≤ M for ϕ ∈ A and for some constant M , which implies that p is
bounded on A.

To prove the other direction, suppose that A 6⊂ DK for any compact K ⊂ Ω. Then there
exist sequences {ϕm} ⊂ A and {xm} ⊂ Ω such that ϕ(xm) 6= 0, and that {xm} has no
accumulation points in Ω. Let

p(ϕ) = sup
m

m|ϕ(xm)|
|ϕm(xm)|

, ϕ ∈ D(Ω). (43)

Obviously it is a seminorm, and p ∈P because for any compact K ′ ⊂ Ω there is a constant
C such that

p(ϕ) ≤ C‖ϕ‖C0 , ϕ ∈ DK′ . (44)

However, we have p(ϕm) ≥ m, so p is not bounded on A, leading to a contradiction. �

Corollary 22. a) The sequence {ϕj} is Cauchy in D(Ω) iff {ϕj} ⊂ DK for some compact
K ⊂ Ω, and ‖ϕj − ϕk‖Cm → 0 as j, k →∞, for each m.

b) We have ϕj → 0 in D(Ω) if and only if {ϕj} ⊂ DK for some compact K ⊂ Ω, and
‖ϕj‖Cm → 0 as j →∞, for each m.

c) D(Ω) is sequentially complete.

Proof. a) If {ϕj} ⊂ DK is Cauchy in DK for some compact K ⊂ Ω, then it is Cauchy in D(Ω)
by continuity of the embedding DK ⊂ D(Ω). Now let {ϕj} ⊂ D(Ω) be Cauchy in D(Ω).
Since Cauchy sequences are bounded, by the preceding theorem we have {ϕj} ⊂ DK for some
compact K ⊂ Ω. But then {pm} ⊂P, which means that pm(ϕj − ϕk) → 0 as j, k →∞, for
each pm.

b) Left as an exercise.
c) Let {ϕj} ⊂ D(Ω) be Cauchy in D(Ω). Then by a) it is Cauchy in some DK . But DK

is Fréchet, so the limit exists in DK . This limit is valid also in D(Ω), since a convergent
sequence in DK is convergent in D(Ω). �

Theorem 23. Let (Y,Q) be a locally convex space, and let f : D(Ω) → Y be a linear map.
Then the following are equivalent.

(a) f is continuous.
(b) ϕj → 0 in D(Ω) implies f(ϕj)→ 0 in Y .
(c) For any compact K ⊂ Ω, f : DK → Y is continuous.

Proof. a) ⇒ b). The continuity of f means that for any q ∈ Q, there is p ∈P such that

q(f(ϕ)) ≤ p(ϕ), ϕ ∈ D(Ω). (45)

Since ϕj → 0 in D(Ω), we have p(ϕj) → 0, hence q(f(ϕj)) → 0. As q ∈ Q is arbitrary, we
conclude that f(ϕj)→ 0 in Y .

b) ⇒ c). Let K ⊂ Ω be compact. If b) holds then for any sequence ϕj → 0 in DK we have
f(ϕj) → 0 in Y . Then continuity of f : DK → Y follows from the general fact that for a
metric space X and a topological space Y , a map f : X → Y is continuous if whenever xj → x
in X we have f(xj) → f(x) in Y . To prove this fact, supposing that f is not continuous at



10 TSOGTGEREL GANTUMUR

x ∈ X, we want to show that there is a sequence xn → x with f(xn) 6→ f(x). Let U ⊂ Y
be an open set such that f(x) ∈ U and that f−1(U) is not open. Hence f−1(U) does not
contain any metric ball Bε(x) = {z ∈ X : d(z, x) < ε} with ε > 0, where d is the metric of X.
This means that for any ε > 0, there is z ∈ Bε(x) with f(z) 6∈ U , i.e., there exists a sequence
xn → x with f(xn) 6∈ U for all n.

c) ⇒ a). We want to show that for any q ∈ Q, there is p ∈P such that (45) holds. Given
q, let us define the function

p(ϕ) = q(f(ϕ)), ϕ ∈ D(Ω). (46)

It is a seminorm on D(Ω), and moreover for each compact K ⊂ Ω, the restriction p|DK is
continuous since

q(f(ϕ)) ≤ Cpm(ϕ), ϕ ∈ DK , (47)

for some C and m possibly depending on K. Therefore p ∈P, which clearly implies (45). �

Example 24. The partial differentiation operator ∂j : D(Ω)→ D(Ω) is continuous, since for
any compact K ⊂ Ω and any m, we have

pm(∂jϕ) ≤ pm+1(ϕ), ϕ ∈ DK . (48)

Remark 25. D(Ω) is not metrizable. We illustrate this in the case Ω = R. Pick a function
ϕ ∈ D(R) with suppϕ = [−1, 1], and define the double-indexed sequence

ϕkm(x) =
1

m
ϕ
(x
k

)
, k,m = 1, 2, . . . . (49)

It is clear that for each fixed k, the sequence ϕk,1, ϕk,2, . . . converges to 0 in D(R). Then
if D(R) was metrizable, say with metric d, we can extract a sequence m1,m2, . . ., such that
ϕk,mk → 0 in D(R). This can be done, for instance, by choosing mk sufficiently large so that

d(ϕk,mk , 0) < 1
k , for each k. But it is not possible for such a sequence to converge in D(R),

because the support of ϕk,mk is [−k, k], which eventually becomes larger than any compact
set in R.

Remark 26. We define the space of compactly supported Cm-functions

Dm(Ω) =
⋃
KbΩ

Dm
K , (50)

and the space of compactly supported Lp-functions

Lpcomp(Ω) =
⋃
KbΩ

Lp(K), (51)

where in the right hand side, the elements of Lp(K) are extended by zero outside K. They
have natural inductive limit topologies, and all the results of the current section apply to
these spaces, with obvious modifications.

5. Subspaces of distributions

From now on the space D(Ω) is equipped with its inductive limit topology.

Definition 27. A distribution on Ω is a continuous linear functional on D(Ω). The space of
all distributions on Ω is denoted by D ′(Ω).

We denote the action u(ϕ) of u ∈ D ′(Ω) also by 〈u, ϕ〉. Theorem 23 tailored to distributions
is the following.

Lemma 28. A linear functional u : D(Ω)→ R is in D ′(Ω) iff any of the following holds.

(a) ϕj → 0 in D(Ω) implies u(ϕj)→ 0.
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(b) For any compact K ⊂ Ω, there exist m and C such that

|u(ϕ)| ≤ C‖ϕ‖Cm for ϕ ∈ DK . (52)

Definition 29. Let u ∈ D ′(Ω). If we have

|u(ϕ)| ≤ C‖ϕ‖Cm for ϕ ∈ DK , (53)

with the same m for all compact K ⊂ Ω, with C possibly depending on K, then u is said to
be a distribution of order ≤ m. The smallest such m is called the order of u.

The rationale for this definition is the idea that lower order distributions are more regular,
because in general the parameter m in (52) will depend on the compact set K, and will grow
unboundedly as K approaches the boundary of Ω. We shall make this intuition more precise
later.

Example 30. For u ∈ C(Ω), the functional Tu : ϕ 7→
∫
uϕ is a distribution of order 0 since

|Tu(ϕ)| ≤ vol(K)‖u‖C0(K)‖ϕ‖C0 , for ϕ ∈ DK . (54)

Similarly, δ is a distribution of order 0, and the derivative evaluation ϕ 7→ ϕ′(0) is a distribu-
tion of order 1.

Definition 31. Let X be a locally convex space equipped with the family P of seminorms,
and let X ′ be its topological dual. Then the weak dual topology (or weak-∗ topology) on X ′ is
the one induced by the family of seminorms P ′ = {px : x ∈ X}, where px(u) = |u(x)|.

Thus uj → 0 in the weak dual topology of D ′(Ω) iff

uj(ϕ)→ 0 for each ϕ ∈ D(Ω). (55)

We see that this is simply the pointwise convergence. The family P ′ is separating, since if
u ∈ X ′ is nonzero, there is x ∈ X such that u(x) 6= 0. Hence the weak dual topology is
Hausdorff.

Remark 32. Another natural topology on D ′(Ω) is the strong dual topology that is described
by the seminorms pB(u) = supϕ∈B |u(ϕ)|, where B varies over bounded subsets of D(Ω). This
topology is the topology of uniform convergence on bounded sets (which is a generalization of
locally uniform convergence). It turns out that the weak and strong dual topologies produce
the same bounded subsets for D ′(Ω), and these two topologies themselves coincide on bounded
subsets of D ′(Ω). So in particular, a sequence converges in the weak topology if and only if
it converges in the strong topology. In these notes we will be concerned only with the weak
dual topology.

Example 33. For u ∈ L1
loc(Ω), the functional Tu : ϕ 7→

∫
uϕ is a distribution of order 0 since

|Tu(ϕ)| ≤ ‖u‖L1(K)‖ϕ‖C0 . for ϕ ∈ DK , (56)

We have seen that the map u 7→ Tu : L1
loc(Ω)→ D ′(Ω) is an injection, so that L1

loc(Ω) can be
regarded as a subspace of D ′(Ω). Thus we will identify Tu with u. Then with the (Fréchet)
topology on L1

loc(Ω) defined by the seminorms {‖ ·‖L1(K) : K b Ω}, from the above inequality

we infer that uj → 0 in L1
loc(Ω) implies 〈uj , ϕ〉 → 0 for any fixed ϕ ∈ D(Ω). Hence the

embedding L1
loc(Ω) ⊂ D ′(Ω) is continuous. We can also infer the continuity of the embedding

C(Ω) ⊂ D ′(Ω) either directly or through the continuous embedding C(Ω) ⊂ L1
loc(Ω).

Example 34. Consider uj(x) = sin(jx). Then uj → 0 in D ′(R), since for any ϕ ∈ D(R) we
have ∫

sin(jx)ϕ(x)dx =
1

j

∫
cos(jx)ϕ′(x)dx→ 0 as j →∞, (57)
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Analogously to D ′(Ω), we can define the dual spaces E ′(Ω), E ′m(Ω), and D ′m(Ω), that are
the topological duals of E (Ω), Em(Ω), and Dm(Ω), respectively. Recall that E (Ω) = C∞(Ω)
and Em(Ω) = Cm(Ω). Here E (Ω) and Em(Ω) carry their natural Fréchet space topologies,
and Dm(Ω) is equipped with its inductive limit topology.

Remark 35. We have u ∈ D ′m(Ω) iff for any compact K ⊂ Ω, there exists C > 0 such that

|u(ϕ)| ≤ C‖ϕ‖Cm for ϕ ∈ Dm
K . (58)

In light of Definition 29, this reveals that the elements of D ′m(Ω) are distributions of order
at most m. Conversely, if u ∈ D ′(Ω) is of order at most m, then for each compact K ⊂ Ω we
have the bound (58) for ϕ ∈ DK . This means that the map u : D(Ω)→ R is continuous when
we take D(Ω) with the subspace topology induced by the embedding D(Ω) ⊂ Dm(Ω). Hence
u can be extended to continuous u : Dm(Ω) → R in a unique way, because the embedding
D(Ω) ⊂ Dm(Ω) is dense. To conclude, the space D ′m(Ω) is precisely the subspace of D(Ω)
consisting of distributions of order at most m.

We shall see an analogous characterization of the spaces E ′(Ω) and E ′m(Ω) in a later section.
For now, let us ascertain that they are indeed subspaces of D ′(Ω).

Let X and Y be locally convex spaces, and let A : X → Y be a linear continuous operator.
Then the transpose A′ : Y ′ → X ′ is defined by

〈Ax, y′〉 = 〈x,A′y′〉, x ∈ X, y′ ∈ Y ′. (59)

This situation can be described by the diagram

X
A //

A′y′

77Y
y′ // R . (60)

In other words, given y′ ∈ Y ′, A′y′ ∈ X ′ is simply y′ ◦A, i.e., the pullback of y′ under A.
Equip X ′ and Y ′ with their weak dual topologies. Then for any x ∈ X, we have

px(A′y′) ≡ |〈A′y′, x〉| = |〈y′, Ax〉| ≡ py(y′), (61)

where y = Ax, showing that A′ : Y ′ → X ′ is continuous.

Theorem 36. In this setting, A′ : Y ′ → X ′ is injective if and only if A(X) is dense in Y .

Proof. Suppose that A(X) is dense in Y . We want to show that A′y′ = 0 implies y′ = 0. By
definition, A′y′ = 0 means that y′(Ax) = 0 for all x ∈ X, i.e., that A(X) ⊂ (y′)−1({0}). But
the set (y′)−1({0}) is closed, so it must contain the closure of A(X), which is Y by the density
assumption. Hence y′ = 0.

In the other direction, assume that A(X) is not dense in Y . We want to produce a nonzero
element y′ ∈ Y ′ such that A′y′ = 0. By assumption, there is an element y ∈ Y such that
y 6∈ A(X). Consider the quotient Z = Y/A(X) with π : Y → Z the canonical projection.
Then since π(y) 6= 0, there is z′ ∈ Z ′ such that z′(π(y)) = 1. So if we define y′ = z′ ◦ π, we
get y ∈ Y ′ and y′(y) = 1. On the other hand, we have y′(η) = 0 for η ∈ A(X), i.e.,

〈A′y′, x〉 = 〈y′, Ax〉 = 0, x ∈ X, (62)

implying that A′y′ = 0. �

Corollary 37. If X is a dense subspace of Y and if the embedding X ⊂ Y is continuous,
then Y ′ is canonically identified with a subspace of X ′ such that the embedding Y ′ ⊂ X ′ is
continuous.
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As an application of this corollary, in the following diagram, we arrange several important
function spaces, and derive embedding relationships between their duals.

D //

��

Dm //

��

D0

��
**

duality RM // D ′m // D ′

E // Em // E 0

44

“mirror” E ′0 //

OO

E ′m //

OO

E ′

OO

(63)

The spaces on the right hand side are the duals of the spaces on the left hand side. Each arrow
represents a continuous and dense embedding. The domain Ω in each space is understood,
e.g., D = D(Ω). Recall that E (Ω) = C∞(Ω) and Em(Ω) = Cm(Ω). It can be taken as a
definition that RM(Ω), the space of Radon measures on Ω, is equal to the topological dual
of D0(Ω), the space of continuous functions with compact support in Ω, equipped with its
inductive limit (LB) topology.

6. Basic operations on distributions

Now we want to extend some basic operations on functions to distributions. This is usually
achieved by means of a simple duality device that can be described as follows. Suppose that
T, T ′ : D(Ω)→ D(Ω) are continuous linear maps, satisfying∫

(Tψ)ϕ =

∫
ψ(T ′ϕ), ψ, ϕ ∈ D(Ω). (64)

Then we define T̃ : D ′(Ω)→ D ′(Ω), which is the intended extension of T , by

〈T̃ u, ϕ〉 = 〈u, T ′ϕ〉, u ∈ D ′(Ω), ϕ ∈ D(Ω). (65)

It is easily checked that T̃ u ∈ D ′(Ω), since by continuity of T ′, ϕj → 0 in D(Ω) implies

T ′ϕj → 0 in D(Ω), which then implies that 〈u, T ′ϕj〉 → 0. Moreover, T̃ : D ′(Ω) → D ′(Ω) is
continuous, because

pϕ(T̃ u) = |〈T̃ u, ϕ〉| = |〈u, T ′ϕ〉| = pψ(u), (66)

where ψ = T ′ϕ ∈ D(Ω). If u ∈ D(Ω), then

〈T̃ u, ϕ〉 = 〈u, T ′ϕ〉 =

∫
u(T ′ϕ) =

∫
(Tu)ϕ = 〈Tu, ϕ〉, (67)

hence T̃ is indeed an extension of T . In fact, T̃ is the unique continuous extension of T . To
see this, we will use the (nontrivial) fact that D(Ω) is sequentially dense in D ′(Ω), i.e., for
any u ∈ D ′(Ω), there exists a sequence {uj} ⊂ D(Ω) such that uj → u in D ′(Ω). Let T1 and
T2 be two continuous extensions of T . Then with u and {uj} as above, since T1uj = T2uj , we
have

T1u− T2u = T1(u− uj) + T2(uj − u), (68)

which implies for any ϕ ∈ D(Ω) that

|〈T1u− T2u, ϕ〉| ≤ pϕ(T1(u− uj)) + pϕ(T2(u− uj))
≤ C1pψ1(u− uj) + C2pψ2(u− uj),

(69)

with some ψ1, ψ2 ∈ D(Ω), and some constants C1, C2 > 0. Now sending j → ∞ we get
〈T1u− T2u, ϕ〉 = 0 for any ϕ ∈ D(Ω), hence T1u = T2u.

Let us consider now some applications of this device.

Differentiation: T = ∂j . As we have already discussed, the operator ∂j : D(Ω)→ D(Ω)
is continuous, and integration by parts gives∫

ϕ∂jψ = −
∫
ψ∂jϕ, ψ, ϕ ∈ D(Ω). (70)
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Hence T ′ = −∂j , and the derivative of u ∈ D ′(Ω) is given by

〈∂ju, ϕ〉 = −〈u, ∂jϕ〉, ϕ ∈ D(Ω). (71)

For any multi-index α, this generalizes to

〈∂αu, ϕ〉 = (−1)|α|〈u, ∂αϕ〉, ϕ ∈ D(Ω). (72)

Multiplication by a smooth function: Tψ = aψ, where a ∈ C∞(Ω). One can easily
see that T ′ = T , so up to showing continuity of T on D(Ω), we infer

〈au, ϕ〉 = 〈u, aϕ〉, u ∈ D ′(Ω), ϕ ∈ D(Ω). (73)

The continuity of T : D(Ω)→ D(Ω) is left as an exercise.
Translation: (Tψ)(x) = ψ(x + a), where a ∈ Rn. We take Ω = Rn. By change of

variables, we have∫
ψ(x+ a)ϕ(x)dx =

∫
ψ(x)ϕ(x− a)dx, ψ, ϕ ∈ D(Rn), (74)

so with (τaψ)(x) = ψ(x+ a), we infer

〈τau, ϕ〉 = 〈u, τ−aϕ〉, u ∈ D ′(Rn), ϕ ∈ D(Rn). (75)

The continuity of τa on test functions is left as an exercise.
Convolution with a test function: Tψ = a ∗ ψ, where a ∈ D(Rn). We have∫

(a ∗ ψ)ϕ =

∫ ∫
a(x− z)ψ(z)ϕ(x)dzdx

=

∫
ψ(ã ∗ ϕ), ψ, ϕ ∈ D(Rn),

(76)

where ã(x) = a(−x) denotes the reflection through the origin. Again leaving the
continuity question as an exercise, we get

〈a ∗ u, ϕ〉 = 〈u, ã ∗ ϕ〉, u ∈ D ′(Rn), ϕ ∈ D(Rn). (77)

Example 38. Let θ ∈ L1
loc(R) be the Heaviside step function, defined by θ(x) = 1 for x > 0

and θ(x) = 0 for x < 0. Then its distributional derivative is given by

〈θ′, ϕ〉 = −〈θ, ϕ′〉 = −
∫ ∞

0
ϕ′(x)dx = ϕ(0), (78)

for any ϕ ∈ D(R). Hence θ′ = δ.

7. Support of distributions

Definition 39. Let u ∈ D ′(Ω) and let ω ⊂ Ω be open. The restriction u|ω ∈ D ′(ω) of u to ω
is defined by

〈u|ω, ϕ〉 = 〈u, ϕ〉, ϕ ∈ D(ω). (79)

We say that u = 0 on ω if u|ω = 0.

This gives us a possibility to talk about distributions locally, meaning that we can focus
on small open sets, one at a time. In order for this to be meaningful, we expect some
natural properties to be satisfied by the restriction process. First, let us check if the above
definition indeed makes sense, i.e., if u|ω ∈ D ′(ω). So let ϕj → 0 in D(ω). Then ϕj → 0
in D(Ω), because there is a compact K ⊂ ω such that ϕj → 0 in DK . Since u ∈ D ′(Ω),
we have 〈u|ω, ϕj〉 = 〈u, ϕj〉 → 0, showing that u|ω ∈ D ′(ω). Note that the same argument
also demonstrates that the embedding D(ω) ⊂ D(Ω) is continuous. However, unless ω = Ω,
the topology of D(ω) is strictly finer than that induced by the embedding D(ω) ⊂ D(Ω),
i.e., there are more open sets in D(ω) than those inherited from D(Ω). The reason is that
for instance, the seminorm p(ϕ) = sup j|ϕ(xj)| with {xj} having no accumulation points in
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ω, is compatible with the topology of D(ω), while it is in general not with the topology of
D(Ω). This results in the fact that not every distribution in D ′(ω) is the restriction of some
distribution in D ′(Ω).

The following theorem shows that as far as restrictions are concerned, we can work with
distributions as if they were functions. The properties a)-d) in the theorem are called the
sheaf properties.

Theorem 40. Let u ∈ D ′(Ω).

a) u|Ω = u.
b) (u|ω)|σ = u|σ for open sets σ ⊂ ω ⊂ Ω.
c) If {ωα} is an open cover of Ω, then

∀α, u|ωα = 0 ⇒ u = 0. (80)

d) With {ωα} as in c), let uα ∈ D ′(ωα) is given for each α, satisfying

uα|ωα∩ωβ = uβ|ωα∩ωβ ∀α, β. (81)

Then there exists a unique u ∈ D ′(Ω) such that u|α = uα for each α.

Proof. a) and b) are trivial.
For c), let ϕ ∈ D(Ω), and let K = suppϕ. Let {χα} be a D(Ω)-partition of unity over K

subordinate to {ωα}. This means that

• χα ∈ D(Ω) is nonnegative for each α,
• χα is nonzero for only finitely many α,
• there is an open set V ⊃ K such that

∑
α χα = 1 on V , and

• suppχα ⊂ ωα for each α.

Note that we use the same index set for {χα} as that of {ωα} at the expense of keeping some
unnecessary zero functions in {χα}. We employ the existence of such a partition of unity
without proof. We compute

〈u, ϕ〉 = 〈u,
∑
α

χαϕ〉 =
∑
α

〈u, χαϕ〉 =
∑
α

〈u|ωα , χαϕ〉 = 0, (82)

showing that u = 0, since ϕ ∈ D(Ω) was arbitrary.
The uniqueness part of d) follows immediately from c). For existence, let ϕ ∈ D(Ω), and

keep the setting of the previous paragraph. We define

u(ϕ) :=
∑
α

〈uα, χαϕ〉. (83)

Before anything, we need to show that this definition does not depend on the partition of
unity {χα}. Let {ξα} be another such partition of unity. Then we have∑

α

〈uα, χαϕ〉 =
∑
α,β

〈uα, ξβχαϕ〉 =
∑
α,β

〈uβ, ξβχαϕ〉 =
∑
β

〈uβ, ξβϕ〉, (84)

where in the second step we used the property (81). Linearity can be verified for ϕ1, ϕ2 ∈ D(Ω)
by taking a partition of unity on suppϕ1 ∪ suppϕ2. For continuity, let K ⊂ Ω be a compact
set, and let ϕ ∈ DK . Then by using the fact that uα ∈ D ′(ωα) and χαϕ ∈ D(ωα), we have

|u(ϕ)| ≤
∑
α

|〈uα, χαϕ〉| ≤
∑
α

Cα‖χαϕ‖Cmα ≤ C‖ϕ‖Cm , (85)

showing that u ∈ D ′(Ω). �

Recall that the support of a continuous function is the closure of the set on which the
function is nonzero. In other words, the support is the complement of the largest open set on
which the function vanishes. This latter formulation makes sense even for distributions.
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Definition 41. The support of u ∈ D ′(Ω) is given by

suppu = Ω \
⋃
{ω ⊂ Ω open : u|ω = 0}. (86)

Lemma 42. It is easy to check that the following properties hold.

(a) u|Ω\suppu = 0.
(b) x ∈ suppu iff x ∈ Ω and x does not have any open neighbourhood on which u vanishes.
(c) suppu agrees with the usual notion when u is a continuous function.
(d) suppu is relatively closed in Ω.
(e) suppu = ∅ implies u = 0.
(f) If ρ ∈ C∞(Ω) is ρ ≡ 1 in a neighbourhood of suppu, then ρu = u.
(g) supp(u+ v) ⊂ suppu ∪ supp v.
(h) supp(au) ⊂ supp a ∩ suppu for a ∈ E (Ω) and u ∈ D ′(Ω).
(i) supp ∂αu ⊂ suppu.

Example 43. supp δ = {0}.

8. Compactly supported distributions

The following theorem characterizes compactly supported distributions.

Theorem 44. We have E ′(Ω) = {u ∈ D ′(Ω) : suppu b Ω}, i.e., the space E ′(Ω) is precisely
the space of compactly supported distributions in Ω. Moreover, E ′(Ω) =

⋃
m E ′m(Ω), meaning

that any compactly supported distribution is of finite order.

Proof. Recall that E (Ω) is a Fréchet space with the seminorms

pm,K(ϕ) = ‖ϕ‖Cm(K), K b Ω, m ∈ N0. (87)

Suppose that u ∈ E ′(Ω). This means that there exists K b Ω, m ∈ N0, and C > 0 such that

|u(ϕ)| ≤ C‖ϕ‖Cm(K), ϕ ∈ E (Ω). (88)

Hence u(ϕ) = 0 if suppϕ ⊂ Ω\K, i.e., suppu ⊂ K. This bound also implies that u : E (Ω)→ R
is continuous in the subspace topology induced by the (dense) embedding E (Ω) ⊂ Em(Ω).
Therefore u has a unique continuous extension u : Em(Ω) → R, establishing the second
statement of the theorem.

Now suppose that u ∈ D ′(Ω) and that K ≡ suppu is compact. Let ρ ∈ D(Ω) be such that
ρ ≡ 1 in a neighbourhood of K. Then we have

u(ϕ) = u(ρϕ) + u(ϕ− ρϕ) = u(ρϕ), ϕ ∈ D(Ω), (89)

because supp(ϕ− ρϕ) ⊂ Ω \K. Since u is a distribution there exist m ∈ N0 and C > 0 such
that

|u(ϕ)| = |u(ρϕ)| ≤ C‖ρϕ‖Cm(K′) ≤ C ′‖ϕ‖Cm(K′), ϕ ∈ D(Ω), (90)

where K ′ = suppρ, i.e., the map u : D(Ω)→ R is continuous in the subspace topology induced
by the (dense) embedding D(Ω) ⊂ E (Ω). So u has a unique extension u ∈ E ′(Ω). �

Exercise 45. Prove that E ′m(Ω) = {u ∈ D ′m(Ω) : suppu b Ω}.

The preceding proof shows that for a compactly supported distribution u, the bound (90)
holds with any compactK ′ that contains the support of u in its interior. The following example
illustrates the interesting phenomenon that in general one cannot get the same bound with
K ′ = suppu. Informally speaking, this means that distributions can “feel” regions slightly
outside of their support.
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Example 46. Let xj = 2−j for j = 1, 2, . . ., and let K = {0, x1, x2, . . .}. Obviously K ⊂ R is
compact. Consider

u(ϕ) =
∑
j

[ϕ(xj)− ϕ(0)], ϕ ∈ E (R). (91)

We have u ∈ E ′(R), since

|u(ϕ)| =
∑
j

|xj |‖ϕ′‖C0([0,1]) ≤ ‖ϕ′‖C0([0,1]), ϕ ∈ E (R). (92)

We also have suppu = K. Now, suppose that

|u(ϕ)| ≤ C
m∑
k=0

‖ϕ(k)‖C0(K), ϕ ∈ E (R), (93)

holds, with some constants C > 0 and m. Let us compute the both sides of the above
inequality for ϕj ∈ E (R) satisfying ϕj ≡ 1 in a neighbourhood of [xj , x1], and ϕj ≡ 0 in a
neighbourhood of [0, xj+1]. Since ϕj(0) = 0 we have

u(ϕj) = j. (94)

On the other hand, all ϕ
(k)
j except the case k = 0 vanish on K, and we get

m∑
k=0

‖ϕ(k)
j ‖C0(K) = 1. (95)

Therefore the bound (93) cannot hold.

Even though in general we cannot get a bound of the form (93) with K = suppu, it is still
true that u(ϕ) = 0 if sufficiently many derivatives of ϕ vanish on suppu.

Theorem 47. Let u ∈ E ′m(Ω) and let ϕ ∈ Cm(Ω) with ∂αϕ = 0 on K = suppu for |α| ≤ m.
Then u(ϕ) = 0.

Proof. Let ε > 0 be arbitrary, and let ρε ∈ D(K +Bε) be a cut-off function satisfying ρε ≡ 1
in a neighbourhood of K and ‖ρε‖Ck ≤ cε−k for all k ≤ m, where K + Bε = {x ∈ Rn :
dist(x,K) < ε} and c > 0 is a constant independent of ε. We have u(ϕ) = u(ρεϕ), and hence

|u(ϕ)| ≤ c
∑
|α|≤m

‖∂α(ρεϕ)‖C0 ≤ c
∑

|α+β|≤m

‖∂βρε‖C0‖∂αϕ‖C0(K+Bε)

≤ c
∑
|α|≤m

ε|α|−m‖∂αϕ‖C0(K+Bε),
(96)

where the constant c > 0 may have different values at its different occurrences. We have
‖∂αϕ‖C0(K+Bε) → 0 as ε→ 0 for |α| ≤ m, because ϕ ∈ Cm(Ω). This means that in the sum
on the right hand side of (96), the terms with |α| = m tend to 0 as ε → 0. The remaining
terms can be treated as follows. Let y ∈ (K+Bε)\K, and let x ∈ K be such that |x−y| < 2ε.
Fix some α with |α| < m, and set f(t) = (∂αϕ)(x+ t(y − x)). Then taking into account that

f (k)(0) = 0 for k ≤ m− |α|, from Cauchy’s repeated integration formula we get

|∂αϕ(y)| ≤ c sup
0<t<1

|f (m−|α|)(t)|. (97)

Since |x− y| < 2ε, the chain rule gives

sup
0<t<1

|f (m−|α|)(t)| ≤ cεm−|α|‖ϕ‖Cm(K+Bε), (98)

confirming that the sum on the right hand side of (96) tends to 0 as ε→ 0. �
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An easy application of this theorem shows that point-supported distributions are nothing
but finite linear combinations of derivatives of the Dirac distribution.

Corollary 48. Let u ∈ E ′m(Ω) and let suppu = {0}, where we assume 0 ∈ Ω. Then there
exist coefficients aα ∈ R, |α| ≤ m, such that

u(ϕ) =
∑
|α|≤m

aα∂αϕ(0), ϕ ∈ Cm(Ω), (99)

that is, u =
∑

(−1)|α|aα∂
αδ.

Proof. Let ϕ ∈ Cm(Ω), and let

ψ(x) = ϕ(x)−
∑
|α|≤m

∂αϕ(0)

α!
xα, x ∈ Ω. (100)

We have ∂αψ(0) = 0 for |α| ≤ m, and so the preceding theorem implies u(ψ) = 0. Conse-
quently, we conclude

u(ϕ) =
∑
|α|≤m

∂αϕ(0)

α!
u(pα) + u(ψ) =

∑
|α|≤m

u(pα)

α!
∂αϕ(0), (101)

where the functions pα ∈ E (Ω) are defined by pα(x) = xα. �

9. Distributions are derivatives of functions

In this section, we will prove that every distribution is locally a (possibly high order)
derivative of a function. This means that distributions are not much more than derivatives
of functions. The heart of the matter is the following representation of compactly supported
distributions as derivatives of functions.

Theorem 49. Let Ω ⊂ Rn be a bounded open set, and let u ∈ E ′m(Ω). Then there exists
f ∈ L∞(Ω) such that u = ∂m+1

1 . . . ∂m+1
n f .

Proof. By definition, there exist K b Ω and a constant C > 0 such that

|u(ϕ)| ≤ C‖ϕ‖Cm(K) = C max
|α|≤m

‖∂αϕ‖C0(K), ϕ ∈ Em(Ω). (102)

For any ψ ∈ D(Ω), we have

‖ψ‖C0 ≤ C‖∂jψ‖C0 , (103)

with some constant C > 0, because Ω is bounded. Hence assuming that ϕ ∈ D(Ω), we can
replace the derivatives in the right hand side of (102) by higher order derivatives so as to
have only one term in the maximum. This term would of course be the norm of ∂βϕ with
β = (m,m, . . . ,m), i.e.,

|u(ϕ)| ≤ C‖∂βϕ‖C0 , ϕ ∈ D(Ω). (104)

We want to replace the uniform norm in the right hand side by the L1-norm of a derivative
of ϕ. For any ψ ∈ D(Ω) and for x ∈ Rn, we have

ψ(x) =

∫
y<x

∂1 . . . ∂nψ(y) dy, (105)

where y < x should be read componentwise. Using this, we finally get

|u(ϕ)| ≤ C
∫
|∂βϕ|, ϕ ∈ D(Ω), (106)
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now with β = (m + 1,m + 1, . . . ,m + 1). This inequality in particular implies that the
distribution u cannot distinguish two functions ϕ,ψ ∈ D(Ω) if they satisfy ∂βϕ = ∂βψ.
Therefore the map

T (∂βϕ) := u(ϕ), (107)

as a linear functional on the space X = {∂βψ : ψ ∈ D(Ω)}, is well-defined. The following
commutative diagram illustrates the setting.

D(Ω)
u //

∂β

��

R

X

T

<<

(108)

Now the estimate (106) simply says that

|T (ξ)| ≤ C‖ξ‖L1(ω), ξ ∈ X, (109)

and so we can employ the Hahn-Banach theorem to extend T as a bounded linear functional
on all of L1(Ω). Hence by the duality between L1 and L∞, there is g ∈ L∞(Ω) such that

T (ξ) =

∫
gξ, ξ ∈ L1(Ω). (110)

Finally, putting ξ = ∂βϕ with ϕ ∈ D(Ω) and unraveling the definitions, we get

u(ϕ) = T (∂βϕ) =

∫
g∂βϕ = (−1)|β|〈∂βg, ϕ〉, (111)

which means that u = (−1)|β|∂βg on Ω. �

It is not difficult to improve the preceding result so that one can represent any compactly
supported distribution as a derivative of a continuous function.

Exercise 50. Let Ω ⊂ Rn be a bounded open set, and let u ∈ E ′m(Ω). Show that there exists
g ∈ C(Rn) such that u = ∂m+2

1 . . . ∂m+2
n g in Ω.

Provided that we work locally, the same result can be established for arbitrary distributions,
since one can turn an arbitrary distribution into a compactly supported one with the help of
a cut-off function.

Exercise 51. Let u ∈ D ′(Ω). Show that for any open ω ⊂ Ω with ω b Ω, there exists
g ∈ C(Rn) and a multi-index α such that u = ∂αg in ω.

By patching together series of local representations, we get a global representation, giving
a precise meaning to the assertion that distributions are derivatives of functions.

Corollary 52. Let u ∈ D ′(Ω). Then there exist a sequence {gj} ⊂ D0(Ω) of functions, and
a sequence {αj} of multi-indices, such that u =

∑
j ∂

αjgj, and that {supp gj} is locally finite,
i.e., any compact set K ⊂ Ω intersects with only a finitely many of the support sets supp gj.
In addition, if u ∈ D ′m(Ω) then we can take all αj satisfying |αj | ≤ m.

Proof. Let {ωj} and {σj} be locally finite coverings of Ω by bounded open sets, such that

Ω =
⋃
j

ωj , Ω =
⋃
j

σj , and σ̄j ⊂ ωj for all j. (112)

Let {ρj} be a partition of unity subordinate to the covering {σj}, and for each j, let ψj ∈ D(ωj)
be a function satisfying ψj ≡ 1 on σ̄1. Then for any ϕ ∈ D(Ω), we have

〈u, ϕ〉 =
∑
j

〈ρju, ϕ〉 =
∑
j

〈ρju, ψjϕ〉 =
∑
j

∫
gj∂

αj (ψjϕj), (113)
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where in the last step we employed the representation from Exercise 50 to ρju. The function
gj can be chosen so that supp gj ⊂ ωj , because we can multiply it by a cut-off function
χ ∈ D(ωj) with χj ≡ 1 in a neighbourhood of ωj , and it would not affect the integral in (113).
The proof is established, since any compact set K ⊂ Ω intersects only finitely many of ωj . �

10. Complex valued distributions

Let X and Z be complex linear spaces. Recall that a map A : X → Z is called linear (or
complex linear) if

A(αx+ y) = αAx+Ay, x, y ∈ X, α ∈ C, (114)

and anti-linear (or conjugate linear) if

A(αx+ y) = ᾱAx+Ay, x, y ∈ X, α ∈ C. (115)

If X is a complex linear space with a locally convex structure (or more generally, with a
topology), then the space of all linear and continuous maps u : X → C is called the dual of
X, and denoted by X ′. Moreover, the space of all anti-linear and continuous maps u : X → C
is called the anti-dual of X, and denoted by X ′∗. Note that the dual and anti-dual are
themselves complex linear spaces. There is a simple relation between these two spaces. For
a map f : X → C, let us call f̄ : X → C given by f̄(x) = f(x) the conjugate of f . Then we
have ū ∈ X ′∗ for u ∈ X ′ and vice versa. Moreover, since αu = ᾱū, the map u 7→ ū : X ′ → X ′∗

is anti-linear, which makes it an anti-linear topological isomorphism between X ′ and X ′∗.

Example 53. Let X be a complex linear space, and recall that an inner product on X is a
function 〈·, ·〉 : X ×X → C satisfying the following properties.

• 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 ⇒ x = 0. (Positive definiteness)

• 〈x, y〉 = 〈y, x〉. (Hermitian property)
• The map 〈·, y〉 : X → C is complex linear for any fixed y ∈ X.

The second and third properties imply that the inner product is anti-linear in its second

argument. We equip X with the topology induced by the norm ‖ · ‖ = 〈·, ·〉
1
2 , making X an

inner product space. The following two maps arise naturally.

• R : X → X ′, defined by (Ry)(x) = 〈x, y〉.
• S : X → X ′∗, defined by (Sx)(y) = 〈x, y〉.

We see that R sends X into its dual, but R itself is anti-linear. We also see that S sends X
into its anti-dual, but S itself is linear. Moreover, we have Sx = Rx, because

(Sx)(y) = 〈x, y〉 = 〈y, x〉 = (Rx)(y). (116)

If X is complete, i.e., if X is a Hilbert space, by the Riesz representation theorem, both R
and S are invertible. Hence in this case, R is an anti-linear topological isomorphism between
X and X ′, and S is a topological isomorphism between X and X ′∗.

A possible definition of complex valued distributions is to regard any continuous linear
functional u : D(Ω) → C as a complex valued distribution. Since D(Ω) is only a real vector
space, linearity here is understood as R-linearity, and hence with this definition, a complex
valued distribution is nothing but a pair of real valued distributions. Another possibility is
to consider continuous (real) linear functionals u : D(Ω,C) → R, where D(Ω,C) is the set
of complex valued test functions. This will not lead to anything new, since if we consider
D(Ω,C) as a real vector space, then D(Ω,C) = D(Ω)⊕D(Ω).

More “complex” candidates for complex valued distributions are the complex dual D ′(Ω,C)
of D(Ω,C), and the anti-dual D ′∗(Ω,C) of D(Ω,C). There are four natural ways to embed
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L1
loc(Ω,C) into either D ′(Ω,C) or D ′∗(Ω,C), as follows.

〈j0u, ϕ〉 =

∫
uϕ = 〈u, ϕ̄〉L2 , j0 : L1

loc(Ω,C)→ D ′(Ω,C) linear,

〈j1u, ϕ〉 =

∫
uϕ̄ = 〈u, ϕ〉L2 , j1 : L1

loc(Ω,C)→ D ′∗(Ω,C) linear,

〈j2u, ϕ〉 =

∫
ūϕ = 〈ϕ, u〉L2 , j2 : L1

loc(Ω,C)→ D ′(Ω,C) anti-linear,

〈j3u, ϕ〉 =

∫
ūϕ̄ = 〈ū, ϕ〉L2 , j3 : L1

loc(Ω,C)→ D ′∗(Ω,C) anti-linear,

(117)

where 〈·, ·〉L2 is the (Hermitian) inner product of L2(Ω,C). Noting that j3u = j0u, j2u = j0ū,
and j1u = j0ū, it takes a little bookkeeping to switch between the different conventions. For
concreteness, in these notes, we are going to consider D ′(Ω,C) as the space of complex valued
distributions, and stick to j0 as the way to embed L1

loc(Ω,C) into D ′(Ω,C). One must be a bit
careful not to write u(ϕ) = 〈u, ϕ〉L2 , when regarding a function u ∈ L2(Ω,C) as a distribution,
since (j0u)(ϕ) = 〈u, ϕ̄〉L2 6= 〈u, ϕ〉L2 in general. If we want u(ϕ) = 〈u, ϕ〉L2 to be true, then
we must either replace D ′(Ω,C) by D ′∗(Ω,C), as it would be the case for j1, or give up on
linearity of the embedding L1

loc(Ω,C)→ D ′(Ω,C), as it would be the case for j2.

11. The Fourier transform

For u ∈ L1, we define its Fourier transform by

û(ξ) = (Fu)(ξ) =

∫
e−iξ·xu(x)dx, ξ ∈ Rn. (118)

It is immediate that ‖û‖L∞ ≤ ‖u‖L1 , and that

û(ξ) =
1

iξk

∫
e−iξ·x∂ku(x)dx→ 0, as ξk →∞, (119)

for u ∈ D . Since D is dense in L1, and C0 is a closed subspace of L∞, where C0 is the space
of continuous functions decaying at infinity, it follows that û ∈ C0 whenever u ∈ L1. This is
a variant of the Riemann-Lebesgue lemma.

If in addition û ∈ L1, then (as we will prove below) u can be recovered by

u(x) =
1

(2π)n

∫
eiξ·xû(ξ)dξ, x ∈ Rn, (120)

i.e., ˆ̂u = (2π)nũ, where ũ is the reflection ũ(x) = u(−x).

Definition 54. We define the Schwartz class to be

S = {ψ ∈ C∞(Rn) : pα,β(ψ) <∞∀α, β}, (121)

where
pα,β(ψ) = sup

x∈Rn
|xα∂βψ(x)|, (122)

are the seminorms with which we equip S .

It is immediate that differentiation and multiplication by polynomials are continuous op-
erations in S .

Exercise 55. Show that S is a Fréchet space, and that D ⊂ S ⊂ L1 where all inclusions
are continuous, proper, and dense.

Theorem 56. The Fourier transform F : S → S is a topological isomorphism with its

inverse given by F−1ψ = (2π)−nF̃ψ. Moreover, for φ, ψ ∈ S we have
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(a)
∫
φ̂ψ =

∫
ψ̂φ,

∫
φψ = (2π)−n

∫
φ̂

˜̂
ψ and

∫
φψ̄ = (2π)−n

∫
φ̂

¯̂
ψ (Parseval’s identity).

(b) φ̂ ∗ ψ = φ̂ψ̂ and φ̂ψ = (2π)−nφ̂ ∗ ψ̂.

(c) ∂̂αφ = (iξ)αφ̂ and x̂αψ = (i∂)αψ̂.

(d) τ̂aφ = e−iaξφ̂ and êiaxψ = τaψ̂.

(e)
ˆ̃
φ =

˜̂
φ and ˆ̄ψ =

¯̂
ψ.

Proof. Let ϕ ∈ S . Then by differentiation of (118) we obtain

∂αϕ̂(ξ) =

∫
e−iξ·x(−ix)αϕ(x)dx, ξ ∈ Rn. (123)

This shows that ϕ̂ ∈ C∞(Rn) and that ∂αϕ̂ = (−i)|α|x̂αϕ. Putting ψ = (−ix)αϕ ∈ S ,
integration by parts gives

ξβ∂αϕ̂(ξ) = (−i)|β|
∫
e−iξ·x∂βψ(x)dx, ξ ∈ Rn. (124)

Since ∂βψ ∈ S , we have ϕ̂ ∈ S . Also, the case α = 0 gives ξβϕ̂(ξ) = (−i)|β|∂̂βϕ.
Continuity of F : S → S follows from

|ξβ∂αϕ̂(ξ)| ≤
∫

(1 + |x|)−n−1(1 + |x|)n+1|∂βψ(x)|dx

≤ C sup
x∈Rn

(1 + |x|)n+1|∂β(xαϕ(x))|.
(125)

For the inversion formula, we need to justify the formal manipulation∫
eiξ·xϕ̂(ξ)dξ =

∫
eiξ·x

(∫
e−iξ·yϕ(y)dy

)
dξ =

∫
ϕ(y)

(∫
e−iξ·(y−x)dξ

)
dy = cϕ(x), (126)

where c is some constant. Switching the integrals would cause no trouble if we introduce the
factor ψ ∈ S that forces decay in the ξ-direction:∫

eiξ·xϕ̂(ξ)ψ(ξ)dξ =

∫
eiξ·xψ(ξ)

(∫
e−iξ·yϕ(y)dy

)
dξ

=

∫
ϕ(y)

(∫
e−iξ·(y−x)ψ(ξ)dξ

)
dy

=

∫
ϕ(y)ψ̂(y − x)dy

=

∫
ψ̂(y)ϕ(x+ y)dy.

(127)

The particular case x = 0 gives the identity
∫
ϕ̂ψ =

∫
ψ̂ϕ. In order to eliminate ψ from the

above formula, we would like to take a sequence of ψ converging to a constant function, which
we implement by replacing ψ(ξ) by ψ(εξ) with ε > 0 small. Noting the simple scaling law

ψ̂ε(ξ) = ε−nψ̂(ξ/ε) where ψε(x) = ψ(εx), we infer∫
ϕ̂(ξ)ψ(εξ)eiξ·xdξ =

∫
ε−nψ̂(y/ε)ϕ(x+ y)dy =

∫
ψ̂(y)ϕ(x+ εy)dy. (128)

Now we take the limit ε→ 0, and get

ψ(0)

∫
ϕ̂(ξ)eiξ·xdξ = ϕ(x)

∫
ψ̂(y)dy, (129)

by dominated convergence. The constant (2π)−n can be verified by taking ψ to be a function

whose Fourier transform is easily computable, e.g., the Gaussian ψ(x) = e−|x|
2

will do.
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The identity (127) can be written as ̂̂ϕψ = ψ̂ ∗ ϕ̃. Then the substitution ϕ =
ˆ̃
φ leads to

(2π)nφ̂ψ = ψ̂ ∗ φ̂. We leave the rest of the theorem as an exercise. �

Corollary 57. Let u ∈ S . Then the maps φ 7→ uφ : S → S and φ 7→ u ∗ φ : S → S are
continuous.

Proof. It is easy to see continuity of multiplication. Then continuity of convolution follows

from the formula û ∗ φ = ûφ̂. �

Remark 58. The Parseval’s identity implies the Plancherel formula: ‖û‖L2 = (2π)n/2‖u‖L2 .
Interpolating this with the bound ‖û‖L∞ ≤ ‖u‖L1 gives the Hausdorff-Young inequality

‖û‖Lq ≤ (2π)n/q‖u‖Lp , (130)

which is valid for 1 ≤ p ≤ 2 and 1
p + 1

q = 1. The Fourier transform of a function u ∈ Lp with

p > 2 is in general not a locally integrable function.

12. Tempered distributions

Definition 59. The topological dual S ′ of S is called the space of tempered distributions.
We equip S ′ with its weak dual topology.

Remark 60. Since D ↪→ S ↪→ E with dense embeddings, we have E ′ ↪→ S ′ ↪→ D ′.

Definition 61. The Fourier transform of u ∈ S ′ is defined by

〈û, ϕ〉 = 〈u, ϕ̂〉, ϕ ∈ S . (131)

This definition clearly gives û ∈ S ′, as the map ϕ 7→ ϕ̂ is continuous in S .

Example 62. For ϕ ∈ S , we have

〈δ̂, ϕ〉 = 〈δ, ϕ̂〉 = ϕ̂(0) =

∫
ϕ = 〈1, ϕ〉, (132)

hence δ̂ = 1. On the other hand, from

〈1̂, ϕ〉 = 〈1, ϕ̂〉 =

∫
ϕ̂ = ˆ̂ϕ(0) = (2π)nϕ(0), (133)

we infer 1̂ = (2π)nδ (This assertion is equivalent to the inversion formula).

Theorem 63. The Fourier transform is a topological automorphism in S ′, and satisfies

(a) ˆ̂u = (2π)nũ,

(b) ∂̂αu = (iξ)αû,

(c) x̂αu = (i∂)αû.

Proof. Continuity of the Fourier transform is obvious from

pϕ(u) = |〈û, ϕ〉| = |〈u, ϕ̂〉| = pϕ̂(u). (134)

The other two assertions are also straightforward. For instance, we have

〈∂̂αu, ϕ〉 = 〈∂αu, ϕ̂〉 = (−1)|α|〈u, ∂αϕ̂〉 = (−1)|α|〈u, ∂α ̂(−iξ)αϕ〉 = 〈û, ∂α(iξ)αϕ〉, (135)

implying (b). �

We end these notes by proving a structure theorem for tempered distributions.

Theorem 64. The following are equivalent.

(a) u ∈ S ′.
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(b) There exists a finite sequence {gα} of continuous functions satisfying |gα(x)| ≤ C(1+|x|m),
such that u =

∑
∂αgα.

Proof. The implication (b) =⇒ (a) is obvious. To prove (a) =⇒ (b), let u ∈ S ′. Then there
exist k and m such that

|〈u, ϕ〉| ≤ C max
|α|≤m

sup
x∈Rn

(1 + |x|2)k|∂αϕ(x)|, ϕ ∈ S . (136)

Introducing ϕk(x) = (1 + |x|2)kϕ(x), we can derive

|∂αϕ| ≤ Cα(1 + |x|2)−k
∑
β≤α
|∂βϕ|, (137)

and hence
|〈u, ϕ〉| ≤ C max

|α|≤m
sup
x∈Rn

|∂αϕk(x)|, ϕ ∈ S . (138)

Now, as in the proof of Theorem 49 the supremum can be replaced by an L1-norm:

|〈u, ϕ〉| ≤ C max
|α|≤m+n

‖∂αϕk(x)‖L1(Rn), ϕ ∈ S . (139)

Therefore the map
T ({∂αϕk : |α| ≤ m+ n}) := u(ϕ), (140)

as a linear functional on the space X = {(∂αψ)|α|≤m+n : ψ ∈ S }, is well-defined. Then the
estimate (139) says that

|T (ξ)| ≤ C max
|α|≤m+n

‖ξα‖L1(Rn), ξ ∈ X, (141)

and so the Hahn-Banach theorem guarantees an extension of T as a bounded linear functional
on [L1(Rn)]N , where N = #{α : |α| ≤ m + n}. Hence by duality, there is gα ∈ L∞(Rn) for
each α with |α| ≤ m+ n, such that

T (ξ) =
∑

|α|≤m+n

∫
gαξα, ξ ∈ [L1(Rn)]N . (142)

Finally, putting ξα = ∂αϕk = ∂α
(
(1 + |x|2)kϕ

)
with ϕ ∈ S , we get

〈u, ϕ〉 = T ({∂αϕk}) =
∑
α

∫
gα∂

αϕk =
∑
α

∫
gα∂

α((1 + |x|2)kϕ) (143)

which can be further processed to yield

〈u, ϕ〉 =
∑
α,β

∫
cαβgαx

β∂βϕ =
∑
α,β

(−1)|β|cαβ
〈
∂β(xβgα), ϕ

〉
, (144)

with some coefficients cαβ, |α| ≤ m + n, |β| ≤ 2k. It is straightforward to turn xβgα into a
continuous function of polynomial growth by integration. �
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