
BAIRE’S THEOREM AND ITS CONSEQUENCES

TSOGTGEREL GANTUMUR

Abstract. We prove Baire’s theorem and its standard consequences: The uniform bound-
edness principle, the open mapping theorem, and the closed graph theorem.
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1. Continuous maps

In a metric space X with metric ρ, we define the ball centered at x ∈ X, of radius r, to be
the set Br(x) ≡ B(x, r) = {y ∈ X : ρ(x, y) < r}. A subset S ⊆ X is called open if for any
x ∈ S, there is ε > 0 such that Bε(x) ⊂ S. Then S is closed iff its complement X \S is open.
Indeed, S is not closed means that there is a sequence {xn} ⊂ S such that xn → x ∈ X \ S.
On the other hand, X \ S is not open means that there is some x ∈ X \ S and a sequence
{xn} ⊂ S such that xn → x. The following lemma clarifies to what extent continuity of a
function is determined by the metrics we put on the domain and target spaces. In particular,
it shows that continuity depends only on the piece of information contained in the metric
that specifies which sets are open and which are not. Loosely speaking, continuity does not
care about exact distances between points, it only cares about which points are infinitesimally
close to each other (This of course leads to topology).

Lemma 1. Let φ : X → Y be a map between two metric spaces. Then the followings are
equivalent.

a) φ is continuous.
b) Whenever U ⊂ Y is open, its preimage φ−1(U) = {x ∈ X : φ(x) ∈ U} is open.
c) The preimage of any closed U ⊂ Y is closed.

Proof. The parts b) and c) are easily seen to be equivalent, since φ−1(U) ∪ φ−1(Y \ U) = X
is a disjoint union. Now let φ be continuous, and let U ⊂ X be closed. Suppose that
{xn} ⊂ φ−1(U) is a sequence with xn → x ∈ X. Then from continuity we have φ(xn)→ φ(x),
and from closedness of U we infer φ(x) ∈ U . This establishes that a) implies c).

Suppose that b) holds. Then for any ε > 0 and y = φ(x) with x ∈ X, the preimage of
Bε(y) contains a ball Bδ(x) with δ = δ(ε, x) > 0. In other words, the δ-closeness in X implies
the ε-closeness in Y , which is continuity. �

It is immediate from the definition that the intersection of any collection of closed sets is
again closed. The closure S of a subset S ⊂ X is the intersection of all closed sets C ⊆ X
such that C ⊇ S.
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Exercise 1. Show that S = {x ∈ X : {xn} ⊂ S and xn → x}.

2. The Baire category theorem

The following fundamental theorem is proved by René-Louis Baire in 1899.

Theorem 2 (Baire). Let X be a complete metric space, and let {Cn} be a countable collection
of closed subsets of X such that

⋃
nCn = X. Then at least one of Cn contains an open ball,

i.e., there exist n, x ∈ X, and ε > 0 such that Bε(x) ⊂ Cn.

Proof. Suppose that Cn does not contain any open ball, for any n. This means that any open
ball B in X contains a point from X \Cn, and so B∩(X \Cn) contains a nontrivial closed ball,
because X \ Cn is open. Applying this with B equal to a ball of radius 1, we obtain x1 ∈ X
and r1 ∈ (0, 1) such that B(x1, r1) ⊂ X \C1. Similarly, there are x2 ∈ X and r2 ∈ (0, 12) such

that B(x2, r2) ⊂ B(x1, r1)∩(X \C2), and so on, we get a sequence of balls B(xn, rn) such that

rn ∈ (0, 1n) and B(xn, rn) ⊂ B(xn−1, rn−1) ∩ (X \ Cn). In particular, we have xn ∈ B(xk, rk)
for n > k, hence {xn} is Cauchy, and by completeness, there is x ∈ X such that xn → x in

X. By closedness, we have x ∈ B(xn, rn), and since B(xn, rn) ⊂ X \Cn, we have shown that
there is x ∈ X such that x 6∈ Cn for all n. �

This proof can be slightly modified to get other forms of the Baire theorem.

Exercise 2. Prove the following statements.

a) A complete metric space cannot be written as a countable union of nowhere dense sets.
b) The intersection of a countable collection of open dense subsets of a complete metric space

is again dense.

3. The uniform boundedness principle

The uniform boundedness principle was proved in 1927 by Stefan Banach and Hugo Stein-
haus, and independently by Hans Hahn. We fist look at a version of this principle for families
of continuous functions.

Theorem 3 (Uniform boundedness). Let X be a complete metric space, and let Y be a normed
linear space. Suppose that F is a collection of continuous functions f : X → Y satisfying

sup
f∈F
‖f(x)‖ <∞, (1)

for each x ∈ X. Then there is a nonempty open set B ⊂ X such that

sup
x∈B

sup
f∈F

f(x) <∞. (2)

In other words, pointwise boundedness of continuous functions on a complete metric space
implies uniform boundedness on a nonempty open set.

Proof. The sets

Cn =
⋂
f∈F
{x ∈ X : ‖f(x)‖ ≤ n}, (3)

are closed, and
⋃
nCn = X, so by Baire’s theorem at least one of Cn contains an open ball. �

If we apply the above principle to families of continuous linear operators between normed
spaces, we get the following corollary, which is called the Banach-Steinhaus theorem.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Baire.html
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http://www-history.mcs.st-andrews.ac.uk/Biographies/Steinhaus.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Steinhaus.html
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BAIRE’S THEOREM AND ITS CONSEQUENCES 3

Theorem 4 (Banach-Steinhaus). Let X and Y be a Banach and normed spaces, respectively,
and let A be a collection of bounded linear operators A : X → Y such that

sup
A∈A
‖Ax‖ <∞, (4)

for each x ∈ X. Then we have
sup
A∈A
‖A‖ <∞. (5)

In other words, pointwise boundedness of linear operators on a Banach space implies uniform
boundedness.

Proof. An application of Theorem 3 to the collection A yields the existence of a ball Bε(z)
with ε > 0 (and z ∈ X) such that

α := sup
x∈Bε(z)

(
sup
A∈A
‖Ax‖

)
<∞. (6)

Now if x ∈ Bε(0), then we can bound ‖Ax‖ by using the triangle inequality as

‖Ax‖ = ‖A(z + x)−Az‖ ≤ ‖A(z + x)‖+ ‖Az‖ ≤ 2α. (7)

Finally, for arbitrary x ∈ X, a simple scaling argument gives

‖Ax‖ =
2‖x‖
ε

∥∥∥∥A( εx

2‖x‖

)∥∥∥∥ ≤ 4α

ε
‖x‖, (8)

meaning that ‖A‖ ≤ 4α/ε independent of A ∈ A. �

Exercise 3. Show that the preceding theorem would not be true if X was not complete.

The following corollary embodies a typical application.

Corollary 5. Let X and Y be a Banach and normed spaces, respectively, and let {An} be a
sequence of bounded linear operators between X and Y . Suppose that for each x ∈ X, there
exists y = y(x) ∈ Y such that

Anx→ y in Y, as n→∞. (9)

Then we have
sup
n
‖An‖ <∞. (10)

In other words, pointwise convergence implies uniform boundedness.

The proof is straightforward because the convergence Anx → y (as n → ∞) implies
supn ‖Anx‖ < ∞ for each x. This corollary can be used to give a quick proof of the fact
that there exists a continuous function whose Fourier series diverges in the uniform norm, by
evaluating the norm (which grows like log n) of the partial summation operator as an operator
acting in the space of continuous functions.

4. The open mapping theorem

The open mapping theorem is one of the cornerstones of linear functional analysis. It is
sometimes called the Banach-Schauder theorem, after Stefan Banach and Juliusz Schauder.

A mapping is called open if it sends open sets to open sets. In view of Lemma 1, observe
that openness is “continuity in the wrong direction”, in the sense that if exists, the inverse of
a continuous mapping is open. To get some rough feeling of what open mappings do, thinking
of maps between finite dimensional spaces, if a set is “expanding in all possible directions”,
then the image of this process under an open mapping will look similar, “expanding in all
possible directions”. As an example of this behavior, if a linear operator between normed
spaces is open, it must be surjective. Indeed, under an open linear mapping T : X → Y , an

http://www-history.mcs.st-andrews.ac.uk/Biographies/Banach.html
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open neighborhood of 0 ∈ X goes to an open neighborhood U of 0 ∈ Y , and for any y ∈ Y
there is α 6= 0 such that αy ∈ U . The following theorem says that the converse is also true
when the two spaces are complete.

Theorem 6 (Open mapping). Let A : X → Y be a bounded linear operator between two
Banach spaces. Then A is surjective if and only if it is open.

Proof. Suppose that A is surjectve. This implies Y =
⋃
n∈NA(Bn(0)), and hence by Baire,

there is a nonempty ball Bδ(y) ⊂ Y and n ≥ 1 such that Bδ(y) ⊂ A(Bn(0)). By choosing
x ∈ X such that y = Ax, and m > 0 so large that Bm(x) ⊃ Bn(0), we can guarantee

Bδ(y) ⊂ A(Bm(x)). By linearity, with α = δ/m we have Bαr(Ax) ⊂ A(Br(x)) for all x ∈ X
and all r > 0. If the inclusion did not have the closure in the right hand side, this statement
is exactly what we wanted. The proof is completed by the following lemma. �

Lemma 7. Let X and Y be Banach and normed spaces, respectively, and let A : X → Y be
a linear operator. Suppose that there is some α > 0 such that Bαr(Ax) ⊂ A(Br(x)) for all
x ∈ X and all r > 0. Then A is open.

Proof. Let z ∈ Bαr(Ax), and fix some ε ∈ (0, 1). Then there is x0 ∈ Br(x) such that

‖z − Ax0‖ < αε, which implies that z ∈ Bαε(Ax0) ⊂ A(Bε(x0)). This means that there is
x1 ∈ Bε(x0) such that ‖z−Ax1‖ < αε2. By iterating, we get a sequence {xn} in X satisfying
‖xn−xn−1‖ < εn and ‖z−Axn‖ < αεn for n ∈ N. From the latter property we have z = Ax∗
with x∗ = limxn, and from the former we infer ‖x∗ − x‖ < r∗ := r + ε/(1− ε), meaning that
Bαr(Ax) ⊂ A(Br∗(x)). If we squeeze this argument we can get the result with r∗ = r, but
what we have is already sufficient for establishing the lemma. �

Exercise 4. Improve the above proof to get r∗ = r.

In view of Lemma 1, the open mapping theorem implies that if the inverse A−1 exists, then
it must be continuous. Since continuity is equivalent to boundedness for linear operators on
normed spaces, we obtain the following result, which is sometimes called Banach’s bounded
inverse theorem.

Corollary 8 (Bounded inverse). Let A : X → Y be an invertible bounded linear operator
between two Banach spaces. Then the inverse A−1 : Y → X is bounded.

A map T : X → Y can be identified with its graph

graph(T ) = {(x, Tx) : x ∈ X} ⊂ X × Y. (11)

Suppose that (X, ρ) and (Y, σ) are complete metric spaces, and equip X × Y with the metric
ρ + σ. If T is continuous, obviously graph(T ) is closed, since (xn, Txn) → (x, y) in X × Y
implies y = Tx. In the linear world, the converse is also true.

Theorem 9 (Closed graph). Let A : X → Y be a linear operator between two Banach spaces.
Then A is bounded if and only if its graph is closed.

Proof. Suppose that graph(A) is closed in X × Y , i.e., that it is a Banach space. Define the
two operators π1 : graph(A) → X and π2 : graph(A) → Y by π1(x, y) = x and π2(x, y) = y,
respectively. It is clear that the both operators are bounded linear, and that π1 is invertible.
Since we have A = π2π

−1
1 , the claim follows from an application of Corollary 8 to π1. �


	1. Continuous maps
	2. The Baire category theorem
	3. The uniform boundedness principle
	4. The open mapping theorem

