MATH 581 ASSIGNMENT 5

DUE WEDNESDAY APRIL 9

- 1. For each of the following functions, determine if it is a tempered distribution, and if so compute its Fourier transform.
 - a) $x \sin x$,
 - b) $\frac{1}{x}\sin x$,
 - c) $e^{i|x|^2}$,
 - d) $x\vartheta(x)$, where ϑ is the Heaviside step function,
- 2. For t > 0, let $\varkappa_t : \mathbb{R}^n \to \mathbb{R}^n$ be the dilation operator $\varkappa_t(x) = tx$. We call a function f defined either on $\Omega = \mathbb{R}^n$ or on $\Omega = \mathbb{R}^n \setminus \{0\}$ homogeneous of degree $s \in \mathbb{C}$ if $\varkappa_t^* f = t^s f$ for all t > 0, that is, $f(tx) = t^s f(x)$ for all t > 0 and $x \in \Omega$.
 - a) Extend the dilation operator \varkappa_t to distributions on Ω , and give a natural definition of homogeneous distributions.
 - b) Show that differentiation of distributions preserves homogeneity.
 - c) Derive a formula for $u \circ A$, where A is an $n \times n$ invertible matrix.
 - d) Show that the Fourier transform of a homogeneous distribution of degree s is a homogeneous distribution of degree -s n.
 - e) From homogeneity considerations, compute the inverse Fourier transform of $|\xi|^{-2}$ up to a constant factor. Then determine this constant factor. Take the space dimension to be $n \ge 3$.
- 3. a) There are (at least) two ways to define the Fourier transform on $L^2(\mathbb{R}^n)$.
 - Extend the Fourier transform from \mathscr{S} to L^2 by using the density of \mathscr{S} in L^2 (as well as the Plancherel bound).
 - First define the Fourier transform on \mathscr{S}' by duality, and then restrict it to L^2 .

Show that these two approaches are consistent with each other.

- b) Show that the Fourier transform acting on L^1 is not onto \mathscr{C}_0 .
- 4. a) Give an example of $u \in \mathscr{C}(\mathbb{R}^n)$ such that $\varphi \mapsto \int u\varphi$ is a tempered distribution and that there is no polynomial p satisfying $|u(x)| \leq |p(x)|$ for all $x \in \mathbb{R}^n$.
 - b) Show that the Radon measure

$$\varphi \mapsto \sum_{k=1}^{\infty} a_k \varphi(k),$$

is in $\mathscr{S}'(\mathbb{R})$ if and only if there are constants $m \geq 0$ and c > 0 such that

$$|a_k| \le ck^m$$
, for all k .

Date: Winter 2014.

DUE WEDNESDAY APRIL 9

- 5. a) Prove that if p is a polynomial with no real zeroes, then there are constants c > 0and m such that $|p(\xi)| \ge c(1+|\xi|)^m$ for all $\xi \in \mathbb{R}^n$. Operators p(D) with p satisfying this condition are called *strictly elliptic*.
 - b) Show that if p(D) strictly elliptic, then the equation p(D)u = f has a solution for each $f \in \mathscr{S}'$.
- 6. Prove the following.
 - a) The Paley-Wiener-Schwartz theorem: Let $K \subset \mathbb{R}^n$ be a compact convex set, and let $\psi \in \mathscr{S}'$. Then a necessary and sufficient condition for ψ to be the Fourier transform of a distribution supported in K is that ψ is entire and satisfies the growth estimate

$$|\psi(\zeta)| \le C(1+|\zeta|)^N e^{I_K(\eta)}, \qquad \zeta = \xi + i\eta \in \mathbb{C}^n,$$

with some constants C and N. Hence the Fourier-Laplace transform of a compactly supported distribution is an entire function of exponential type. Recall that the indicator function I_K of K is defined as

$$I_K(\eta) = \sup_{x \in K} \eta \cdot x.$$

b) If the set of real zeroes of p is bounded, then every tempered distribution solution of p(D)u = 0 is an entire function of exponential type.

c) If p(D) is a nontrivial differential operator and $u \in \mathscr{E}'$ satisfies p(D)u = 0 then u = 0. 7. Let p be a nonzero polynomial. Show the following.

- a) The equation p(D)u = f has at least one smooth solution for every $f \in \mathscr{D}$.
- b) If all solutions of p(D)u = 0 are smooth, then p(D) is hypoelliptic.
- c) If p(D) admits a fundamental solution that is smooth outside some ball of finite radius (centred at the origin), then p(D) is hypoelliptic.
- 8. Recall that by Hörmander's theorem, p(D) is hypoelliptic if and only if for any $\eta \in \mathbb{R}^n$ one has $p(\xi + i\eta) \neq 0$ for all sufficiently large $\xi \in \mathbb{R}$.
 - a) Construct a non-hypoelliptic polynomial p in dimension n > 1 such that $|p(\xi)| \to \infty$ as $|\xi| \to \infty$ for $\xi \in \mathbb{R}^n$.
 - b) For any given c > 0, construct a non-hypoelliptic polynomial p in dimension n > 1such that $|p(\xi + i\eta)| \to \infty$ uniformly in $\{|\eta| \le c\}$ as $|\xi| \to \infty$ for $\xi \in \mathbb{R}^n$.

 $\mathbf{2}$