MATH 581 ASSIGNMENT 4

DUE MONDAY MARCH 24

- 1. Let $\Omega \subset \mathbb{R}^n$ be an open set, and let $\{u_k\} \subset \mathscr{D}'(\Omega)$ be a sequence such that for each $\varphi \in \mathscr{D}(\Omega), \langle u_k, \varphi \rangle$ is convergent as $k \to \infty$. Show that the map $\varphi \mapsto \lim \langle u_k, \varphi \rangle$ is a distribution on Ω .
- 2. Find all fundamental solutions of the ordinary differential operators $\partial_x + \lambda$ and $\partial_x^2 + \lambda$ in \mathbb{R} , where $\lambda \in \mathbb{C}$ is a constant. How many of those are supported in $[0, \infty)$?
- 3. Find a fundamental solution of the wave operator $\partial_t^2 \Delta$ with support in the half space $\{(x,t): x \in \mathbb{R}^n, t \ge 0\}$, where n = 1, 2, 3. What is the support of each? 4. For $u \in \mathscr{E}'$ and $v \in L^1_{\text{loc}}(\mathbb{R}^n)$, we defined $u * v \in \mathscr{D}'$ by

$$\langle u * v, \varphi \rangle = \langle u, \tilde{v} * \varphi \rangle, \qquad \varphi \in \mathscr{D}.$$

- Recall also the notations $\tilde{v}(z) = v(-z)$ and $(\tau_x \phi)(y) = \phi(y-x)$.
- a) Show that if $u \in \mathscr{E}'$ and $v \in \mathscr{E}$ then $u * v \in \mathscr{E}$ and $(u * v)(x) = u(\tau_x \tilde{v})$ for $x \in \mathbb{R}^n$.
- b) Show that for fixed $u \in \mathscr{E}'$, the mapping $v \mapsto u * v : \mathscr{E} \to \mathscr{E}$ is continuous.
- 5. a) Let $u \in \mathscr{E}'$ and $v \in \mathscr{D}'$. Show that

$$\tau_a(u * v) = (\tau_a u) * v = u * (\tau_a v), \qquad a \in \mathbb{R}^n,$$

where for distributions, the translation is defined by

$$\langle \tau_a u, \varphi \rangle = \langle u, \tau_{-a} \varphi \rangle.$$

b) For any distribution u, show that

$$\tau_a u = \delta_a * u,$$

where $\delta_a \equiv \tau_a \delta$ is the Dirac mass concentrated at $a \in \mathbb{R}^n$. 6. Let $u \in \mathscr{E}', \phi \in \mathscr{E}$, and $\psi \in \mathscr{D}$. Prove that

$$u * (\phi * \psi) = (u * \phi) * \psi = (u * \psi) * \phi.$$

Show that

$$1 * (\delta' * \vartheta) \neq (1 * \delta') * \vartheta,$$

where 1 is the function identically 1 in \mathbb{R} , and ϑ is the Heaviside step function.

- 7. Prove that $\mathscr{D}(\Omega)$ is dense in $\mathscr{D}'(\Omega)$, where $\Omega \subset \mathbb{R}^n$ is open.
- 8. Let u and v be the surface measures of the spheres $\{x \in \mathbb{R}^3 : |x| = a\}$ and $\{|x| = b\}$, respectively. Compute u * v, and determine its singular support.
- 9. a) Are the operators from Problems 2 and 3 hypoelliptic?
 - b) Describe all fundamental solutions of the Cauchy-Riemann operator $\partial_{\bar{z}} = \frac{1}{2}(\partial_x + i\partial_y)$, as well as those of $\partial_z = \frac{1}{2}(\partial_x - i\partial_y)$.

Date: Winter 2014.

DUE MONDAY MARCH 24

- c) Schwartz's theorem implies that the Cauchy-Riemann operator is analytic-hypoelliptic, i.e., that if $\Omega \subset \mathbb{C}$ is open and if $f \in \mathscr{D}'(\Omega, \mathbb{C})$ satisfies $\partial_{\bar{z}} f = 0$ on Ω then f is *real* analytic in Ω (with Ω considered as a subset of \mathbb{R}^2). Show that f is in fact complex analytic (i.e., holomorphic) in Ω .
- d) Show that there exists a real analytic, but no complex analytic function f in $\mathbb{C} \setminus \{0\}$ such that $\partial_z f = \frac{1}{z}$ in $\mathbb{C} \setminus \{0\}$.

 $\mathbf{2}$