MATH 581 ASSIGNMENT 3

DUE MONDAY MARCH 10

- 1. Let $\varphi \in \mathscr{D}(\mathbb{R}), \, \varphi \neq 0$, and $\varphi(0) = 0$. In each of the following cases, decide if $\varphi_j \to 0$ as $j \to \infty$ in $\mathscr{D}(\mathbb{R})$. Does it hold $\varphi_j \to 0$ pointwise or uniformly? *a*) $\varphi_j(x) = j^{-1}\varphi(x-j)$;
 - b) $\varphi_j(x) = j^{-n}\varphi(jx)$, where n > 0 is an integer.
- 2. a) Show that a linear map $f : \mathscr{D}(\Omega) \to \mathscr{D}(\Omega')$ is continuous iff for each compact set $K \subset \Omega$ there exists a compact set $K' \subset \Omega'$ such that $f : \mathscr{D}(K) \to \mathscr{D}(K')$ is continuous.
 - b) Show that $L: \mathscr{D}(\Omega) \to \mathscr{D}(\Omega)$ is continuous, where L is a linear differential operator with smooth coefficients.
- 3. Prove that the space $\mathscr{D}^m(\Omega)$ with its inductive limit topology is sequentially complete.
- 4. Show that any closed bounded subset of $\mathscr{E}(\Omega)$ is compact in $\mathscr{E}(\Omega)$.
- 5. In each case, show that f defines a distribution on \mathbb{R}^{2} , and find its order.
 - a) $f(\varphi) = \int_{\mathbb{R}^2} |x|^{-1} e^{|x|^2} \varphi(x) dx;$
 - b) $f(\varphi) = \int_{\mathbb{R}}^{\mathbb{R}} \varphi(s, 0) \mathrm{d}s;$
 - c) $f(\varphi) = \int_0^1 \partial_1 \varphi(0, s) \mathrm{d}s.$
- 6. Compute the following derivatives in the sense of distributions.
 - a) $\partial_x |x|;$
 - b) $\partial_x \operatorname{sign} x$ (sign x = 0 if x = 0 and sign x = x/|x| otherwise);
 - c) $\partial_x \log |x|;$

d) $\partial_2 f$, where $f \in \mathscr{D}'(\mathbb{R}^2)$ is the distribution from b) of the previous exercise.

7. Prove the following.

a) $\partial_j(au) = (\partial_j a)u + a(\partial_j u)$ for $a \in C^{\infty}(\Omega)$ and $u \in \mathscr{D}'(\Omega)$.

- b) $\partial_j \partial_k u = \partial_k \partial_j u$ for $u \in \mathscr{D}'(\Omega)$.
- c) If $u_k \to u$ in $\mathscr{D}'(\Omega)$ then $\partial_j u_k \to \partial_j u$ in $\mathscr{D}'(\Omega)$.
- d) There is no distribution on \mathbb{R} such that its restriction to $\mathbb{R} \setminus \{0\}$ is $e^{1/x}$.
- 8. If u is the characteristic function of the unit ball in \mathbb{R}^n , compute $x \cdot \nabla u$.
- 9. Let $\omega \subset \mathbb{R}$ be an open interval, and $u \in \mathscr{D}'(\omega)$. Let $0 \leq k \leq \infty$.
 - a) Show that if u' = 0 then u is a constant function.
 - b) Show that if u' = f with $f \in C^k(\omega)$, then $u \in C^{k+1}(\omega)$.
 - c) Show that if u' + au = f with $a \in C^{\infty}(\omega)$ and $f \in C^{k}(\omega)$, then $u \in C^{k+1}(\omega)$.
- 10. Find the limits $n \to \infty$ of the following sequences in $\mathscr{D}'(\mathbb{R})$.
 - a) $n\phi(nx)$, where ϕ is a nonnegative continuous function whose integral over \mathbb{R} is finite.
 - b) $n^k \sin nx$, where k > 0 is a constant.
 - c) $x^{-1}\sin nx$.

Date: Winter 2014.

DUE MONDAY MARCH 10

- 11. a) Let $\Omega \subset \mathbb{R}^n$ be a bounded open set, and let $u \in \mathscr{E}'^m(\Omega)$. Show that there exists $g \in C(\mathbb{R}^n)$ such that $u = \partial_1^{m+2} \dots \partial_n^{m+2} g$ in Ω . b) Let $u \in \mathscr{D}'(\Omega)$. Show that for any open $\omega \subset \Omega$ with $\overline{\omega} \in \Omega$, there exists $g \in C(\mathbb{R}^n)$
 - and a multi-index α such that $u = \partial^{\alpha} g$ in ω .
- 12. Show that for any given $\varepsilon > 0$, there exists a finite sequence f_0, f_1, \ldots, f_n of continuous functions on $\mathbb R,$ such that $\operatorname{supp} f_k \subset [-\varepsilon,\varepsilon]$ for each k and

$$\delta = f_0 + f_1' + \ldots + f_n^{(n)},$$

where $\delta \in \mathscr{D}'(\mathbb{R})$ is the Dirac mass concentrated at the origin. Prove that there is no continuous function f with compact support such that $\delta = f^{(n)}$ for some n.

 $\mathbf{2}$