MATH 581 ASSIGNMENT 2

DUE WEDNESDAY FEBRUARY 12

- 1. For each of the following cases, determine the characteristic cones and characteristic surfaces.
 - a) Wave equation with wave speed c > 0: $u_{xx} + u_{yy} = c^{-2}u_{tt}$.
 - b) Tricomi-type equation: $u_{xx} + yu_{yy} = 0$.
- c) Ultrahyperbolic "wave" equation: $u_{xx} + u_{yy} = u_{zz} + u_{tt}$. 2. Prove that if $\beta \in \mathbb{R}$ and $u \in C^1(\mathbb{R}^2)$ is a solution of $u_t + \beta u_x = 0$, then

 $\{(x,t): u \in C^k \text{ on a neighbourhood of } (x,t)\},\$

is a union of lines.

3. Consider the Laplace equation $\Delta u = 0$ on the unit disk, given in polar coordinates by $\mathbb{D} = \{(r, \theta) : r < 1\}$. Specify the Cauchy data

$$u(1,\theta) = f(\theta), \qquad \partial_r u(1,\theta) = g(\theta),$$

where f and q are 2π -periodic real analytic functions. Then show that a real analytic solution exists in a neighbourhood of the circle $\partial \mathbb{D}$. Investigate what happens to the solution as $r \to 0$ and $r \to \infty$, if f and g are of the form

$$a_0 + \sum_{n=1}^m a_n \cos n\theta + b_n \sin n\theta$$

i.e., trigonometric polynomials.

4. Consider the wave equation

$$u_{tt} - u_{xx} = f,$$

with the initial data

for x < 0, $u(x, x) = \psi(x)$ $u(x, \alpha x) = \phi(x)$ and for x > 0,

where $\alpha \neq 1$ is a constant, and ϕ and ψ are real analytic functions in a neighbourhood of $0 \in \mathbb{R}$. Note that we are specifying the initial condition on the union of two rays, one of which is characteristic, and the other may or may not be characteristic, depending on α . Supposing that f is real analytic in a neighbourhood of $0 \in \mathbb{R}^2$, investigate if and when the problem is locally (analytically) solvable near $0 \in \mathbb{R}^2$. Do we need to impose compatibility conditions on the data ϕ and ψ ?

5. Let p be a nontrivial polynomial of n variables, and let f be a real analytic function in a neighbourhood of $0 \in \mathbb{R}^n$.

a) Prove that the set $\{\xi \in \mathbb{R}^n : p(\xi) = 0\}$ is closed and of measure zero.

Date: Winter 2014.

DUE WEDNESDAY FEBRUARY 12

b) Show that there is a neighbourhood of $0 \in \mathbb{R}^n$, on which the equation $p(\partial)u = f$ has a solution. Supposing that $p(\xi) = \sum_{\alpha} a_{\alpha} \xi^{\alpha}$, here the operator $p(\partial)$ is given by

$$p(\partial) = \sum_{\alpha} a_{\alpha} \partial^{\alpha}.$$

c) Extend this local solvability result to linear operators with analytic coefficients. That is, assuming that $\{a_{\alpha}\}$ is a finite collection of real analytic functions in a neighbourhood of $0 \in \mathbb{R}^n$, with the property that $p(\xi) = \sum_{\alpha} a_{\alpha}(0)\xi^{\alpha}$ is a nontrivial polynomial, show that the equation

$$\sum_{\alpha} a_{\alpha} \partial^{\alpha} u = f,$$

has a solution on a neighbourhood of $0 \in \mathbb{R}^n$.

- 6. Let p be a nontrivial polynomial of n variables, and let H ⊂ ℝⁿ be a (closed) half-space.
 a) Show that if u ∈ C[∞](ℝⁿ) satisfies p(∂)u = 0 in ℝⁿ and supp u ⊂ H, and if the boundary of H is noncharacteristic for the constant coefficient operator p(∂), then u ≡ 0. Provide a counterexample when ∂H is characteristic and p is a nonconstant homogeneous polynomial.
 - b) Show that if we require that u is compactly supported, then the noncharacteristic condition on ∂H can be dropped, i.e., prove that if $u \in C_c^{\infty}(\mathbb{R}^n)$ satisfies $p(\partial)u = 0$ in \mathbb{R}^n then $u \equiv 0$. Imply that if $u \in C_c^{\infty}(\mathbb{R}^n)$ then $\operatorname{supp} u$ is contained in the convex hull of $\operatorname{supp} p(\partial)u$.
- 7. Let u be a C^2 solution of the *n*-dimensional wave equation $\partial_t^2 u \Delta u = 0$, and assume that u and all its first derivatives vanish on the line segment $\{(0,t) \in \mathbb{R}^{n+1} : 0 < t < T\}$. By using Holmgren's theorem, determine the region of \mathbb{R}^{n+1} where u must vanish.

 $\mathbf{2}$