MATH 581 ASSIGNMENT 1

DUE WEDNESDAY JANUARY 29

1. Consider the function $v(x,t) = \frac{x}{t}E(x,t)$ for $x \in \mathbb{R}$ and t > 0, where

$$E(x,t) = \frac{1}{2\sqrt{\pi t}} e^{-\frac{|x|^2}{4t}} \qquad (x \in \mathbb{R}, t > 0),$$

is the heat kernel of \mathbb{R} . Show that $\partial_t v = \Delta v$ in $\mathbb{R} \times (0, \infty)$, and that $v(x, t) \to 0$ as $t \to 0^+$ for each fixed $x \in \mathbb{R}$. How do we reconcile this with Tychonov's uniqueness theorem?

2. With $\Omega \subset \mathbb{R}^n$ a bounded smooth domain, consider the initial-boundary value problem

$$\begin{cases} \partial_t u = \Delta u + au & \text{in } \Omega \times (0, \infty), \\ u = 0 & \text{on } \partial\Omega \times (0, \infty), \\ u = g & \text{on } \Omega \times \{0\}, \end{cases}$$

where $g \in C(\overline{\Omega})$ and $a \in L^{\infty}(\Omega \times (0, \infty))$ are given functions. Assume the existence of a solution u in the class $C^2(\Omega \times (0, \infty)) \cap C(\overline{\Omega} \times [0, \infty))$.

- a) Show that the solution is unique in the same class.
- b) Assuming $a \equiv 0$, show that

$$||u(\cdot,t)||_{L^{\infty}(\Omega)} \le (4\pi t)^{-\frac{n}{2}} ||g||_{L^{1}(\Omega)}, \quad \text{for all} \quad t > 0.$$

- c) Show that there exists c > 0 with the property that if $||a||_{\infty} \leq c$ then the L^2 -norm of $u(\cdot, t)$ decays exponentially in time.
- d) Under some smallness condition on a, can you establish an exponential decay in stronger norms, such as H^k or L^{∞} ?
- 3. With $\Omega \subset \mathbb{R}^n$ a bounded smooth domain, consider the initial-boundary value problem

$$\begin{cases} \partial_t u = \Delta u & \text{in} \quad \Omega \times (0, \infty), \\ \partial_\nu u = 0 & \text{on} \quad \partial\Omega \times (0, \infty), \\ u = g & \text{on} \quad \Omega \times \{0\}, \end{cases}$$

where ∂_{ν} is the outward normal derivative at $\partial\Omega$, and $g \in C(\bar{\Omega})$ is a given function. Assume the existence of a solution u in the class $C^2(\Omega \times (0,\infty)) \cap C(\bar{\Omega} \times [0,\infty))$.

a) Prove the maximum principle:

$$\sup_{\Omega imes(0,\infty)} u \leq \sup_\Omega g, \qquad ext{and} \qquad \inf_{\Omega imes(0,\infty)} u \geq \inf_\Omega g.$$

b) Show that the solution is unique in the same class.

Date: Winter 2014.

DUE WEDNESDAY JANUARY 29

- c) Show that $u(\cdot, t)$ converges uniformly to a constant as $t \to \infty$. What can you say about the *rate* of convergence?
- 4. (Duhamel's principle) Let $g \in C_b(\mathbb{R}^n)$, and let $f \in C^1(\mathbb{R}^n \times (0,\infty))$ be a function satisfying

$$\sup_{\mathbb{R}^n \times (0,\beta)} |f| < \infty, \qquad \text{and} \qquad \sup_{\mathbb{R}^n \times (\alpha,\beta)} |\nabla_x f| < \infty,$$

for each $0 < \alpha < \beta < \infty$, where $C_b(\mathbb{R}^n)$ is the space of bounded continuous functions on \mathbb{R}^n , and $\nabla_x = (\partial_{x_1}, \ldots, \partial_{x_n})$ is the "spatial gradient". Prove that

$$u(x,t) = \int_{\mathbb{R}^n} E(x-y,t)g(y)\,\mathrm{d}y + \int_0^t \int_{\mathbb{R}^n} E(x-y,t-s)f(y,s)\,\mathrm{d}y\,\mathrm{d}s,$$

satisfies the inhomogeneous heat equation

$$\partial_t u - \Delta u = f, \quad \text{in} \quad \mathbb{R}^n \times (0, \infty),$$

with $u(\cdot, t) \to g$ locally uniformly in \mathbb{R}^n as $t \to 0^+$. Here

$$E(x,t) = (4\pi t)^{-\frac{n}{2}} e^{-\frac{|x|^2}{4t}} \qquad (x \in \mathbb{R}^n, t > 0),$$

is the heat kernel of \mathbb{R}^n .