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1 Introduction

In the realm of quantum mechanics, one of the most important properties desired is for
all operators representing physical quantities to be self-adjoint in the Hilbert space theory.
This property of an operator to be self-adjoint is equivalent to saying that the eigenvalue
problem is completely solvable for them, that is, that there exists a complete set (discrete
or continuous) of eigenfunctions.

Since the operators representing observables in quantum mechanics are typically not
everywhere defined unbounded operators, it was a major mathematical problem to clarify
whether (on what assumptions) they are self-adjoint. In particular, one of the most impor-
tant problems of mathematical physics was to show that the Coulomb Hamiltonian (CH)
operator of the many-body Schrödinger wave equation was self-adjoint. As a nice anecdote
to give to light the difficulty of this problem, the undisputed expert on operator theory, John
von Neumann, was unable to prove the self-adjointness of the CH operator. This grand feat
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was achieved by Tosio Kato in a landmark paper published in 1951.

In this course paper, I will first review the proper background theory that is used
to develop the proof for self-adjointness of the CH operator. I will then proceed with the
proof that the CH operator is essentially self-adjoint.

2 Preliminaries

In this section we go over essential definitions and theorems that will be useful for
developing and understanding the proof.

It is interesting to note that many of the most important operators which occur in
mathematical physics are not bounded. We start with some basic definitions of unbounded
operators on Hilbert spaces and some useful properties of unbounded operators on Hilbert
spaces.

Definition 2.1 : An unbounded operator T will only be defined on a dense linear subset
of the Hilbert space H. Thus an operator on H is a linear map from its domain, a linear
subspace of H, into H. Such a subspace, which we denote by DpT q, is called the domain
of the operator T .

Remark: For the remainder of this paper, we will only consider the domain of opreators to
be dense. In order to identify an unbounded operator on H, one must first give the domain
on which it acts and then specify how it acts on that subspace.

The next definition was first introduced by von Neumann and it has become quite
essential in the study of unbounded operators in mathematical physics and in general.

Definition 2.2 : The graph of the linear transformation T is the set of pairs

txϕ, Tϕy|ϕ P DpT qu

The graph of T , denoted by ΓpT q, is thus a subset of H ˆH which is a Hilbert space with
inner product

`

xϕ1, ψ1y, xϕ2, ψ2y
˘

“
`

ϕ1, ϕ2

˘

`
`

ψ1, ψ2

˘

T is called a closed operator if ΓpT q is a closed subset of H ˆH.

Definition 2.3 : Let T1 and T be operators on H. If ΓpT1q Ą ΓpT q, then T1 is said to be
an extension of T and we write T1 Ą T . Equivalently, T1 Ą T if and only if DpT1q Ą DpT q
and T1ϕ “ Tϕ for all ϕ P DpT q
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Definition 2.4 : An operator T is closable if it has a closed extension. Every closable
operator has a smallest closed extension, called its closure, which we denote by T .

One should note that a natural way to try to obtain a closed extension of an oper-
ator, T , is to take the closure of its graph in H ˆH.

Proposition 2.5 : If T is closable, then ΓpT q “ ΓpT q

Proof. Suppose that S is a closed extension of T . Then ΓpT q Ă ΓpSq so if x0, ψy P ΓpT q then
ψ “ 0. Define R with DpRq “ tψ|xψ, φy P ΓpT q for some φu by Rψ “ φ where φ P H is the
unique vector so that xψ, φy P ΓpT q. Then ΓpRq “ ΓpT q so R is clsed extension of T . But
R Ă S which is an arbitrary closed extension, so R “ T

For unbounded operators we can also define the notion of an adjoint operator by ex-
tending the definition from the bounded case to the unbounded case.

Definition 2.6 : Let T be a densely defined linear operator on H. Let DpT ˚q be the
set of ϕ P H for which there is an η P H with

`

Tψ, ϕ
˘

“
`

ψ, η
˘

for all ψ P DpT q

For each such ϕ P DpT ˚q, we define T ˚ϕ “ η. T ˚ is called the adjoint of T . By the Riesz
lemma, ϕ P DpT ˚q if and only if

ˇ

ˇ

`

Tψ, ϕ
˘
ˇ

ˇ ď C}ψ} for all ψ P DpT q. We note that S Ă T
implies T ˚ Ă S˚.

For this definition, notice that η needs to be uniquely determined by
`

Tψ, ϕ
˘

“
`

ψ, η
˘

we need the fact that DpT q is dense. Unlike the case of bounded operators, the domain of
T ˚ may not be dense. As a matter of fact it is possible to have DpT ˚q “ 0. If the domain
of T ˚ is dense, then we can define T ˚˚ “ pT ˚q˚. There is a simple relationship between the
notions of adjoint and closure expressed in the next theorem.

Theorem 2.7 : Let T be a densely defined operator on H. Then:
(a) T ˚ is closed.
(b) T is closable if and only if DpT ˚q is dense in which case T “ T ˚˚.
(c) If T is closable, then pT q˚ “ T ˚.

The proof of Theorem 2.7 can be found in [1] on Pg. 253. I won’t prove it here
as it is not one of the most important theorems we will be using, but it is ncessary to estab-
lish in order to realize properties of unbounded operators.

Definition 2.8 : A densely defined operator T on H is called symmetric (or Hermi-
tian) if T Ă T ˚, that is, if DpT q Ă DpT ˚q and Tϕ “ T ˚ϕ for all ϕ P DpT q. Equivalently, T
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is symmetric if and only if

`

Tϕ, ψ
˘

“
`

ϕ, Tψ
˘

for all ϕ, ψ P DpT q

Definition 2.9 : T is called self-adjoint if T “ T ˚, that is if and only if T is sym-
metric and DpT q “ DpT ˚q.

Remark: A symmetric operator is always closable, since DpT ˚q Ą DpT q is dense in H.
If T is symmetric, T ˚ is a closed extension of T , so the smallest closed extension T ˚˚ of T
must be contained in T ˚. Thus for symmetric operators, we have

T Ă T ˚˚ Ă T ˚

For closed symmetric operators,
T “ T ˚˚ Ă T ˚

And, for self-adjoint operators,
T “ T ˚˚ “ T ˚

As one can see, a closed symmetric operator T is self-adjoint if and only if T ˚ is symmet-
ric. The distinction between closed symmetric operators and self-adjoint operators is very
important for it is only the self-adjoint operators that the spectral theorem holds.

Definition 2.10 : A symmetric operator T is called essentially self-adjoint if its clo-
sure T is self-adjoint. If T is closed, a subset D Ă DpT q is called a core for T if T |D “ T .
The notation T |D means the closure of T restricted to domain D.

Remark: If T is essentially self-adjoint, then it has one and only one self-adjoint exten-
sion, for suppose that S is a self-adjoint extension of T . Then, S is closed and thereby, since
S Ą T, S Ą T ˚˚. Thus, S “ S˚ Ă pT ˚˚q˚ “ T ˚˚, and so S “ T ˚˚. The converse is also true;
namely, if T has one and only one self-adjoint extension, then T is essentially self-adjoint.
Since T ˚ “ T

˚
“ T ˚˚˚, T is essentially self-adjoint if and only if

T Ă T ˚˚ “ T ˚

Let us have some unbounded operator B. We say B is a self-adjoint operator, then to specify
A uniquely one need not give the exact domain of B (which is often difficult), but just some
core for B.

The following theorem combines the definitions and propositions thus far stated in
formulating basic criterion for self-adjointness of unbounded operators. We will state it
without proof for general reference and will make use of it when we shall discuss discuss
self-adjoint extensions of symmetric operators. Proof can be found in [1] Pg. 256.
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Theorem 2.11 : Let T be a symmetric operator on H. Then the following three state-
ments are equivalent:
(a) T is self-adjoint
(b) T is closed and Ker

`

T ˚ ˘ i
˘

“ t0u
(c) Ran

`

T ˘ i
˘

“ H

Following this theorem, an immediate corollary can be found by formulating the theo-
rem for the case of essentially self-adjointness.

Corollary 2.12 : Let T be a symmetric operator on a H. Then the following are equivalent:
(a) T is essentially self-adjoint
(b) Ker

`

T ˚ ˘ i
˘

“ t0u
(c) Ran

`

T ˘ iq are dense

We will directly be using the following proposition in proving the kinetic energy oper-
ator term of the CH operator is essentially self-adjoint. This particular proposition will help
us show that a multiplication operator for L2-norm defined for some measurable functions
on some measure space with finite measure is self-adjoint and that the spectrum of such an
operator is defined as an essential range of the measurable functions. Proof of this proposi-
tion can be found in [1] Pg. 260 as we only need this for quick tool.

Proposition 2.13 : Let xM,µy be a measure space with µ a finite measure. Suppose
that f is a measurable, real-valued function on M which is finite a.e.rµs. Then the operator
pTf q : ϕÑfϕ on L2pM,µq with domain

DpTf q “
 

ϕ|fϕ P L2
pM,µq

(

is self-adjoint and the spectrum of Tf is the essential range of f

The proof of Proposition 2.13 can be done by noting that if Tf is symmetric we can
then take some function that is in domain of T ˚f and let T ˚f act on such a function. We can
then apply the monotone convergence theorem by defining a cutoff function of the form of
the characteristic function χNpmq and multiply that with T ˚f , thereby allowing us to define
the norm of T ˚f acting on some function by a limit of χNpmqT

˚
f acting on some function.

Now that we have some nice properties and definitions for unbounded operators, specif-
ically for symmetric unbounded operators, we can now discuss both a key point regarding
symmetric unbounded operators on some H and some motivation behind this key point that
generated the possibility of the proof of the CH operator being essentially self-adjoint by
Kato.

As stated in [4] the reasoning behind discussing symmetric, non-self-adjoint opera-
tors arises from the physical reasoning of quantum mechanics. Such reasoning gives a formal
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expression for the Hamiltonian of the system; it usually is a partial differental operator on
an appropriate L2 space. By formal, we mean that the domain of such a Hamiltonian is
not specified. Even if the domain of the Hamiltonian operator is not defined, it is usually
quite easy to find a dense domain on which the formal Hamiltonian is a well-defined and
symmetric operator H. We note that, if the closure of H, denoted H, is self-adjoint then we
can use H to describe the quantum dynamics occuring (by Stone’s theorem). But if H is not
self-adjoint, then one must ask: Does H have self-adjoint extensions? And if it has several,
which one shall one choose to generate the dynamics? For the case of several extensions,
one can surely note that the extensions can be distinguished by the physics of the system
being described. Thus, one can see that the problem of finding the one particular slef-adjoint
extension is not just a mathematical objective, but is intimately linked to physics as well.

The study of symmetric operators and their extensions are done by von Neumann’s
theory of deficiency indices. By von Neumann’s theory, one can thus understand when sym-
metric operators have self-adjoint extensions, and how such extensions are characterized.
Kato used the particular conditions set by Neumann’s theory of deficiency indices to aid in
the development of his proof that the CH operator is essentially self-adjoint. Kato noted
that if one imposes a requirement that the entire CH operator is symmetric, this then allows
the domain of the operator to not be too artificially restricted. If the domain of the operator
was too artificially restricted then one will see that essential self-adjointness of the operator
can be lost as the operator could be extended in infinitely many ways. Thus he realized

Definition 2.14 : Suppose that A is a symmetric operator. Let

K ` “ Kerpi´ A˚q “ Ranpi` AqK (2.1)

K ´ “ Kerpi` A˚q “ Ranp´i` AqK (2.2)

K ` and K ´ are called the deficiency subspaces of A. The pair of numbers n`, n´, given
by n`pAq “ dimrK `s, n´pAq “ dimrK ´s are called the deficiency indices of A. The
deficiency indices are allowed to be any pair of nonnegative integers and it is possible for n`
or n´ (or both) to be equal to infinity.

Kato made use of the following Corollary 2.15, by noting that if we know that the
CH operator is symmetric (or Hermitian) and real, then CH operator can certainly be ex-
tended to a self-adjoint operator. Along with this Corollary, Kato develops a Theorem that
we shall state and prove in Section 3 that allows him to utilize this Corollary along with von
Neumann’s theorem for symmetric operator self-adjoint extensions (Theorem 2.17), to show
that CH operator has only one self-adjoint extension for a domain that is not too artificially
restricted, meaning that he could find a specific core such that the CH operator is essentially
self-adjoint.

Corollary 2.15 : Let A a closed symmetric operator with deficiency indices n` and n´.
Then,
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(a) A is self-adjoint if and only if n` “ 0 “ n´.
(b) A has self-adjoint extensions if and only if n` “ n´. There is a one-one correspondence
between self-adjoint extension of A and unitary maps from K ` onto K ´.
(c) If either n` “ 0 ‰ n´ or n´ “ 0 ‰ n`, then A has no nontrivial symmetric extensions
(such operators are called maximal symmetric).

The following theorem gives a simple and useful criterion for a symmetric operator
to have self-adjoint extensions and is denoted as von Neumann’s theorem [4]. Before that
we make note of a definition that will be used for the theorem.

Definition 2.16 : An antilinear map C : HÑ H
`

C
`

αϕ` βψ
˘

“ αCϕ` βCψ
˘

is called a
conjugation if it is norm-preserving and C2 “ I.

Theorem 2.17 : Let A be a symmetric operator and suppose that there exists a conju-
gation C with C : DpAq Ñ DpAq and AC “ CA. Then A has equal deficiency indices and
therefore has self-adjoint extensions.

Proof of Theorem 2.17 is found in [4] Pg. 143-144. We only need to state the theorem
for our purposes, as we will not be using this result directly, rather we use it as method for
orienting our proof of self-adjointness in the right direction.

We now have enough definitions and properties to officially demonstrate that the CH
operator is indeed essentially self-adjoint.

3 Essential Self-Adjointness of the Coulomb Hamilto-

nian Operator

In this section, we will follow what Kato had done for the first few steps in his paper,
and outline in detail a few of his arguments that he had developed. We will then prove an
equivalently defined CH operator is essentially self-adjoint using a slightly different approach
that is essentially what Kato had done. This slightly different approach will enable us to
define what Kato potentials are [6], and make use of the most important theorem of this
course paper, The Kato-Rellich theorem for perturbation of unbounded operator self-adjoint
operators. With this theorem, we will show how the equivalently defined CH operator is
essentially self-adjoint.

Definition 1.1 : The Coulomb Hamiltonian (CH) for a system of N electrons and A atomic
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nuclei may be written as

H “

A
ÿ

g

p2
g

2mg

`
e2

8πε0

ÿ

1ďgăhďA

ZgZh
|rg ´ rh|

`

N
ÿ

i“1

˜

p2
i

2m
´

e2

4πε0

A
ÿ

g“1

Zg
|ri ´ rg|

¸

`
e2

8πε0

ÿ

1ďiăjďN

1

|ri ´ rj|

(3.1)

where the kinetic energy terms are written in terms of the momentum operator and ri, rj, rg
are position coordinates respective to ith-,jth-,gth-particle (be it electron or nucleus for each
respective index). One can note that each individual term in p3.1q has obvious classical in-
terpretations; the charges and masses of the electrons and nuclei are regarded as parameters
to be taken from experimental data. N and A are undetermined positive integers.

As stated earlier, in 1951 Kato [5] had proved that CH, H, is essentially self-adjoint.
This property, which is stronger than Hermiticity, guarantees that the time evolution

Ψptq “ e
´iHt

~ Ψp0q

of a Schrödinger wavefunction is unitary, and so conserves probability. This is not true for
operators that are Hermitian but not self-adjoint. Thirring [8] showed a nice example: the
radial momentum operator ´i~ B

Br
acting on functions φprq, φp0q “ 0 with 0 ď r ă 8.

One of the first steps that Kato did was to separate out the centre-of-mass (COM)
motion from p3.1q. In classical mechanics it is easy to separate off the COM motion of a
system of point masses. Classically the motion of the COM is uncoupled from the other
motions. The COM moves uniformly (i.e., with constant velocity) through space as if it
were a point particle with mass equal to the sum Mtot of the masses of all the particles.

In quantum mechanics a free particle has as state function a plane wave function,
which is a non-square-integrable function of well-defined momentum. The kinetic energy of
this particle can take any positive value. The position of the COM is uniformly probable
everywhere, in agreement with the Heisenberg uncertainty principle.

All that is needed to remove the COM motion from the full molecular Hamiltonian
is a linear point transformation symbolised by

ptξq “ xV (3.2)

In p3.2q MT is the total mass of all the particles in the system, t is a 3 by NT ´ 1 matrix
pNT “ N `Aq and ξ is a 3 by 1 matrix, so that the combined (bracketed) matrix on the left
of p3.2q is 3 by NT . V is an NT by NT matrix which, from the structure of the left side of
(3.2), has a special last column whose elements are

ViNT
“M´1

T mi, MT “

NT
ÿ

i“1

mi (3.3)
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Hence ξ is the standard COM coordinate

ξ “M´1
T

NT
ÿ

i“1

mixi (3.4)

As the coordinates tj, j “ 1, 2, . . . , NT ´ 1 are to be translationally invariant,

NT
ÿ

i“1

Vij “ 0, j “ 1, 2, . . . , NT ´ 1 (3.5)

on each remaining column of V and it is easy to see that p3.5q forces tj Ñ tj as xi Ñ xi` a
for all i.

The ti are independent if the inverse transformation

x “ ptξqV´1 (3.6)

exists. The structure of the right hand side of p3.6q shows that the bottom row of V´1 is
special and, WLOG, its elements may be equired to be

`

V´1
˘

NT i
“ 1 i “ 1, 2, . . . , NT (3.7)

The inverse requirement on the remainder of V´1 implies that

NT
ÿ

i“1

`

V´1
˘

ij
mi “ 0 j “ 1, 2, . . . , NT ´ 1 (3.8)

The Hamiltonian p3.1q in the new coordinates becomes

Hpt, ξq “ ´
~2

2

NT´1
ÿ

i“1

1

µii
∇2
ptiq ´

~2

2

ÿ

1ďgăhďNT´1

1

µij
~∇ptiq9~∇ptjq

`
e2

8πε0

ÿ

1ďiăjďNT

ZiZj
rij

´
~2

2MT

∇2
pξq

“ H1
ptq ´

~2

2MT

∇2
pξq

(3.9)

Here the positive constants 1
µij

are given by

1

µij
“

NT
ÿ

k“1

m´1
k VkiVkj, i, j “ 1, 2, . . . , NT ´ 1 (3.10)

The operator rij is the interparticle distance operator expressed as a function ti. Thus

rij “

˜

ÿ

α

˜

NT´1
ÿ

k“1

ppV´1
qkj ´ pV

´1
qkiqtαk

¸2¸ 1
2

(3.11)
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In p3.9q the ~∇ptiq are grad operators expressed in the cartesian components of ti and
the last term represents the COM kinetic energy. Since the COM variable does not enter the
potential energy term, the COM may be separated off completely so that the eigenfunctions
of H are of the form

TpξqΨptq (3.12)

where Ψptq is a wavefunction for the Hamiltonian H1
ptq, Eq. p3.9q, which will be referred

to as the translationally invariant Hamiltonian. It should be emphasized that different
choices of V are unitarily equivalent so that the spectrum of H1

ptq is independent of the
particular form chosen for V, provided that it is consistent with p3.3q and p3.5q. In particular
it is perfectly possible to put the kinetic energy into diagonal form by choosing an orthogonal
matrix U that diagonalizes the positive definite symmetric matrix of dimensionNT´1 formed
from the 1

µij
and then replacing elements of the originally chosen V according to

Vij Ñ

NT´1
ÿ

k“1

VikUkj, j “ 1, 2, . . . , NT ´ 1 (3.13)

As can be seen from p3.11q, the practical problem with any choice of V is the complicated
form given to the potential operator.

In [5], Kato considers only H1 and he actually uses a coordinate system in which
the kinetic energy operator can be written in the form

~2

2

NT´1
ÿ

i“1

1

µii
∇2
priq `

~2

2µ0

ˇ

ˇ

ˇ

ˇ

ˇ

NT´1
ÿ

i“1

|~∇2
priq|

ˇ

ˇ

ˇ

ˇ

ˇ

2

(3.14)

where t is replaced by r so that it agrees with what Kato used in describing the coordinates.
Each individual ri is though of as being composed of three caresian coordinates pxi, yi, ziq
with ri “

a

px2i ` y
2
i ` z

2
i q.

Kato then stated that if µ0 increases without limit then one can retrieve back H
of p3.1q, but having one ”particle” less, so that there is no loss of generality in choosing the
form H1.

Kato then specifies the potential energy operator as an expressible form

Vprq “ V1
prq `

NT´1
ÿ

i“1

V0iprq `
NT´1
ÿ

i,j

Vij

`

|ri ´ rj|
˘

(3.15)

Kato states in his paper, ”...we cannot expect such an obscure operator to be self-
adjoint in the literal sense.” He clarifies that H1 (with such a defined potential energy V(r))
has very vague specifications for a differential operator. To remove such vagueness, Kato

10



notes that one must specify the domain of the operator thereby specifying what sort of func-
tions it is supposed to operator on, and one must specify the behaviour of the potential.

As noted in Section 2, Kato realizes that H1 must be a symmetric (or Hermitian)
operator, and that H can be applied on all functions of the form

gprq “ P prqexp

˜

´
1

2

˜

NT´1
ÿ

i“1

r2i

¸¸

where P is a polynomial.

Observe that this does imply that it can only be applied to such a sort of functions.
Rather, it must produce meaningful results when applied to such functions. The reason Kato
chooses such functions for his proof is because he wanted to work in momentum space, and
such class of functions (Hermite polynomial functions) have nice Fourier transforms. Ob-
serve that such class of functions that Kato uses are orthogonal with respect to the weight
function measure and thus also form an orthogonal basis of some Hilbert space of functions
that satisfy the L2-norm that is respective to the weight function measure chosen. This class
of functions belongs to a Hilbert space H denoted L2 of square integrable functions. It is
then seen that for H1 to make any sense one must have the product function of Vg must
belong to the same HIlbert space.

To ensure such criteria is met, Kato requires that for two real constants C and R

|Vprq| ď C
ż

rďR

|Vijprq
2dxdydz ď C2

|Vijprq| ď Cpr ą Rq

with r “
a

px2i ` y
2
i ` z

2
i q. The Coulomb potential satisfies such conditions this immediately.

In fact, all inverse power potentials of the form r´m satisfy such conditions provided that
m is positive and m ă 3

2
. Such conditions do not hold for inverse square potentials, making

relativistic calculations in computations very tricky.

As stated in Section 2, Kato used these requirements to show that it is not neces-
sary to specify the domain of H1 more closely than this, as such conditions on functions and
potentials enabled Kato to find a core for the operator such that it was not too artificially
restricted. Thus, Kato showed that H1 restricted to a core has a unique self-adjoint extension
and that this extension gives back the original operator H.

It was quite well-known that the kinetic energy operator alone is indeed self-adjoint
because of their classical mechanical experience. In the 1930s M.H.Stone had shown that
the multiplicative opeartors of the kind specified above are also self-adjoint but it was not
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obvious that the sum of the operators would be self-adjoint because the sum of the operators
is defined only on the intersection of their domains.

Through an early variation of his now well-established theorem, the Kato-Rellich the-
orem, Lemma 4 in [5] showed that for a specific type of potential energy operator V with a
domain that contains the domain of the kinetic energy operator, and for any function f that
was in the domain of the full kinetic energy operator, the product of Vf is bounded above
by the kinetic energy operator. This means that the Coulomb potential is small compared to
the kinetic energy. This then enabled Kato to arrive at his main result of Lemma 5, stating
that indeed H is self-adjoint and is bounded from below.

Rather than expanding the steps in [5] of Kato, I will present a more general and
modern account of proving an equivalent formulation of H1 in p3.9q is self-adjoint. First I
will show that just the kinetic energy operator is self-adjoint. Second, I will make use of the
Kato-Rellich theorem, and the definition of Kato Potentials, and a specific theorem denoted
as Kato’s theorem in [4] to show that the CH operator is self-adjoint. Thus, the main result
of this section can be stated in the following theorem.

Theorem 3.2 : Let x1, . . . ,xn in R3 be orthogonal coordinates for R3n. Then

H “ ´

n
ÿ

i“1

∆i ´

n
ÿ

i“1

ne2

|xi|
`

n
ÿ

iăj

e2

|xi ´ xj|
(3.16)

is essentially self-adjoint on C80
`

R3n
˘

.

We first prove that the kinetic energy operator of p3.16q, ´∆, is self-adjoint. We
first note that ´∆ as an operator on L2pRnq, there are two reasonable domains to choose
for ´∆,

Dmax “
 

ϕ | ϕ P L2
pRn

q and´∆ϕ P L2
pRn

q in the sense of distributions
(

(3.17)

Dmin “ C80
`

Rn
˘

(3.18)

We denote ∆|Dmax by Tmax and ∆|Dmin
by Tmin

Theorem 3.3 : (a) ϕ P Dmax if and only if |λ|2ϕ̂pλq P L2
`

Rn
˘

and in that case Tmaxϕ “

F´1
´

|λ|2ϕ̂pλq
¯

.

(b) Tmax is self-adjoint
(c) Tmin is essentially self-adjoint and Tmin “ Tmax.

Proof. (a) follows immediately from the formula

´y∆T “ |λ|2T̂
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which is valid for arbitrary tempered distributions. By Proposition 2.13 of Section 2, multi-
plication by |λ|2 is self-adjoint on

!

ϕ P L2
`

Rn
˘

| |λ|2ϕ P L2
`

Rn
˘

)

Since F is unitary and
Tmax “ F´1

|λ|2F

Tmax is self-adjoint on Dmax.
To prove that Tmin is essentially self-adjoint it is sufficient to show that

T ˚min “ Tmax

since then
Tmin “ T ˚˚min “ Tmax

Suppose that ψ P DpT ˚minq. Then

p´∆ϕ, ψq “ pTminϕ, ψq “ pϕ, T
˚
minψq for all ϕ P C80

`

Rn
˘

Thus ´∆ψ P L2
`

Rn
˘

in the sense of distributions, so ψ P Dmax and

T ˚minψ “ ´∆ψ “ Tmaxψ

Conversely, suppose that ψ P Dmax. Then

´∆ψ P L2
`

Rn
˘

so that for all ϕ P C80 ,
`

´∆ϕ, ψq “
`

ϕ,´∆ψ
˘

Thus, ψ P DpT ˚minq and T ˚minψ “ ´∆ψ.

We denote ´∆ with the domain Dmax by H0 and call it the free Hamiltonian. We
now prove a theorem that gives further properties of the functions in DpH0q so that we may
complete the proof of the self-adjointness of the kinetic energy operator of H of p3.16q.

Since H0 is self-adjoint, its powers Hm
0 are also self-adjoint. Since Hm

0 “ F´1|λ|2mF ,
the domain of Hm

0 is just the Sobolev space W 2m. By Sobolev’s Lemma (cf.[4] Pg.52) im-
mediately implies:

Proposition 3.4 : A vector ϕ P L2
`

Rn
˘

is in C8
`

H0

˘

“
Ş8

m“1DpH
m
0 q if and only if

ϕ P C8
`

Rn
˘

and Dαϕ P L2
`

Rn
˘

for each α.
More importantly, the vectors in DpH0q itself have the following properties:
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Theorem 3.5 : Let ϕ P L2
`

Rn
˘

be in DpH0q. Then
(a) If n ď 3, ϕ is a bounded continous function and for any a ą 0, there is a b, independent
of ϕ, so that

}ϕ}8 ď a}H0ϕ} ` b}ϕ} (3.19)

(b) If n ě 4 and 2 ď q ă 2n
pn´4q

, then ϕ P Lq
`

Rn
˘

and for any a ą 0, there is a b (depending

only on q, n, and a) so that
}ϕ}8 ď a}H0ϕ} ` b}ϕ} (3.20)

Proof. By the Riemann-Lebesgue lemma and the Plancherel theorem, (a) will follow if we
can prove that ϕ̂ P L1

`

Rn
˘

and

}ϕ̂}1 ď a}λ2ϕ̂}2 ` b}ϕ̂}2 (3.21)

We will prove p3.21q in the case n “ 3. Suppose ϕ P DpH0q, then p1 ` λ2qϕ̂ and p1 ` λ2q´1

are in L2
`

R3
˘

so ϕ̂ P L1
`

R3
˘

and by the Schwarz inequality

}ϕ̂}1 ď c}pλ2 ` 1qϕ̂}2 ď cp}ϕ̂}2 ` }λ
2ϕ̂}2q (3.22)

where c2 “
ş

p1` λ2q´2dλ. For any r ą 0, let ϕ̂rpλq “ r3ϕ̂prλq. Then

}ϕ̂r}1 “ }ϕ̂}1, }ϕ̂r}2 “ r
3
2 }ϕ̂}2 (3.23)

and }λ2ϕ̂r}2 “ r´
1
2 }λ2ϕ̂}2 (3.24)

Thus, using p3.22q for ϕ̂r, and using p3.23q and p3.24q, we obtain

}ϕ̂}1 ď cr´
1
2 }λ2ϕ̂}2 ` cr

3
2 }ϕ̂}2 (3.25)

for any r ą 0. If we choose r large enough, p3.21q follows.

For (b), we use the Hausdorff-Young inequality and the Plancherel theorem, and note that
we only need to show that for any p satisfying 2n

pn`4q
ă p ď 2 and a ą 0 there is a b so that

}ϕ̂}p ď a}λ2ϕ̂}2 ` b}ϕ̂}2 (3.26)

The Hölder inequality implies that

}ϕ̂}pp ď }p1` λ
2
q
´p
}r}p1` λ

2
q
p
|ϕ̂|p}s (3.27)

where 1
r
` 1

s
“ 1. Choosing s “ 2

p
, the triangle inequality shows that

}p1` λ2qp|ϕ̂|p}s “
`

}p1` λ2q|ϕ̂|}2
˘p

(3.28)

ď
`

}ϕ̂}2 ` }λ
2ϕ̂}2

˘p
(3.29)

14



Thus if }p1` λ2q´p} 2
p2´p

“ c1 ă 8, we have

}ϕ̂}p ď c
1
p

1

`

}λ2ϕ̂}2 ` }ϕ̂}2
˘

(3.30)

But

}p1` λ2q´p}
2

p2´p
2

p2´p

“

ż

dλ

p1` λ2q
2p
p2´p

ă 8 (3.31)

if 4p
p2´pq

ą n, i.e. ifp ą 2n
p4`n

. The method of proving that the constant in front of }λ2ϕ̂} can

be chosen arbitrarily small is the same as in part (a).

The present the following definition that will be used in the Kato-Rellich theorem, and
other theorems in this section as well.

Definition 3.6 : Let A and B be densely defined operators on a Hilbert space H. We
say that B is A-bounded if
(i) DpBq Ą DpAq
(ii) There exist real numbers a and b such that

}Bϕ} ď a}Aϕ} ` b}ϕ} @ϕ P DpAq (3.32)

Notice if
}Bϕ}2 ď a2}Aϕ}2 ` b2}ϕ}2 (3.33)

then p3.32q holds. On the other hand, if p3.32q holds, then

}Bϕ}2 ď a2}Aϕ}2 ` b2}ϕ}2 ` 2ab}Aϕ}}ϕ} (3.34)

Writing ab “ paεqp b
ε
q we get

2ab}Aϕ}}ϕ} ď a2ε2}Aϕ}2 `
b2

ε2
}ϕ}2

So, p3.32q implies p3.33q with a replaced by a` ε and b replaced by b` 1
ε
. Thus the infimum

of a over all pa, bq such that p3.32q holds is the same as the infimum of a over all pa, bq such
that p3.33q holds. This common infimum is called the relative bound of B with respect to
A. If this relative bound is 0 we say that B is infinitesimally small with respect to A. In
verifying p3.32q or p3.33q it is sufficient to do so for all ϕ belonging to a core of A

We now present the Kato-Rellich theorem. This theorem was proved by Rellich in
1939 and was extensively used by Kato in the 1960’s and is now known as the Kato-Rellich
theorem.

Theorem 3.7 (the Kato-Rellich theorem): Suppose that A is a self-adjoint, B is sym-
metric, and B is A-bounded with relative bound a ă 1. Then A`B is self-adjoint on DpAq
and essentially self-adjoint on any core of A. Further, if A is bounded below by M , then
A`B is bounded below by M ´maxt b

p1´aq
, a|M | ` bu where a and b are given by p3.32q.

15



Proof. We will show that RanpA`B ˘ iµ0q “ H for some µ0 ą 0. For ϕ P DpAq, we have

}pA` iµqϕ}2 “ }Aϕ}2 ` µ2
}ϕ}2 (3.35)

Letting ϕ “ pA` iµq´1ψ, and rewriting p3.35q (with ˘ “ `) as

}ψ}2 “ }ApA` iµq´1ψ}2 ` µ2
}pA` iµq´1ψ}2 (3.36)

In particular,

}ApA` iµq´1ψ} ď }ψ} and }pA` iµq´1ψ} ď
1

µ
}ψ} (3.37)

Therefore, applying p3.32q with ϕ “ pA` iµq´1ψ, we find that

}BpA` iµq´1ψ} ď a}ApA` iµq´1ψ} ` bpA` iµq´1ψ} (3.38)

ď

˜

a`
b

µ

¸

}ψ} (3.39)

Thus, for µ0 large, C “ BpA`iµ0q
´1 has norm less than one, since a ă 1 by assumption. This

implies that ´1 is not in the spectrum of C and so I`C is invertible and so RanpI`Cq “ H.
Also, RanpA` iµ0q “ H since A is self-adjoint. Thus the equation

pI ` CqpA` iµ0qϕ “ pA`B ` iµ0qϕ for ϕ P DpAq (3.40)

implies that RanpA ` B ` iµ0q “ H. The proof that RanpA ` B ´ iµ0q “ H is the same.
Thus by Theorem 2.11 in Section 2, which describes the fundamental criterion for symmetric
operators, A`B is self-adjoint on DpAq.

If D0 is a core of A then it follows from p3.32q that DppA`Bq|D0q Ą DpA|D0q. This
shows that A`B is essentially self-adjoint on any core of A.

For proving the semiboundedness statement, let us suppose that t P R and ´t ă M . Then
RanpA` tq “ H and the same estimates as before show that }BpA` tq´1} ă 1 if

´t ăM ´max

#

b

p1´ aq
, a|M | ` b

+

(3.41)

Thus for such t, RanpA ` B ` tq “ H and pA ` B ` tq´1 “ pA ` tq´1 ˆ pI ` Cq´1 which
implies that ´t is an element of the resolvent set of pA`Bq.

We come now to Kato’s basic application of the Kato-Rellich theorem to H defined in
Theorem 3.2. First, we define some new classes of functions.
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Definition 3.8 : Let
〈
M,µ

〉
be a measure space. The set of measurable functions f on M

which can be written f “ f1 ` f2 where f1 P L
r
`

M,dµ
˘

and f2 P L
s
`

M,dµ
˘

will be denoted
by Lr

`

M,dµ
˘

` Ls
`

M,dµ
˘

.

In [4], it is stated that one needs a theorem that describes the behavior of the po-
tential energy term of H when it is an element of L2

`

R3
˘

` L2
`

R3
˘

which is always true
for Coulomb type potentials as we shall see shortly. The reason V is in this space has to
do with how Kato expressed the potential energy operator in an expressible form p3.15q,
splitting it into essentially a sum of three terms. Before we dive into the theorem that shows
´∆ ` V(x) is essentially self-adjoint on Dmin defined when proving the free Hamiltonian
is self-adjoint (Theorem 3.3), we give a very useful definition that will help us place more
general conditions on the potential energy operator.

Definition 3.9 (Kato Potentials): Let X “ Rn for some n. A locally L2 real-valued
function on X is called a Kato Potential if for any α ą 0 there is β “ βpαq such that

}V ϕ} ď α}∆ϕ} ` β}ϕ} (3.42)

for all ϕ P C80 . Clearly the set of all Kato potentials on X form a real vector space.

Lemma 3.10 : We prove that V P L2
`

R3
˘

is a Kato potential, which is apart of the
proof of Theorem 3.11.

Proof. Suppose that X “ R3 and V P L2pXq. We claim that V is a Kato potential. Indeed,

}V ϕ} :“ }V ϕ}2 ď }V }2}ϕ}8 (3.43)

So, we will be done if we show that for any a ą 0 there is a b ą 0 such that

}ϕ}{infty ď }∆ϕ}2 ` b}ϕ}2 (3.44)

By the Fourier inversion formula, we have

}ϕ}8 ď }ϕ̂}1 (3.45)

where ϕ̂ denotes the Fourier transform of ϕ. Now the Fourier transform of ∆ψ (it’s just
a positive version of our free Hamiltonian, it is easily changeable to negative depending on
how you physically view the system) is the function

ξ ÞÑ }ξ}2}ϕ̂pξq} (3.46)

where }ξ} denotes the Euclidean norm of ξ. Since ϕ̂ belongs to the Schwartz space S, the
function

ξ ÞÑ p1` }ξ}2q}ϕ̂pξq} (3.47)
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belongs to L2 as does the function ξ ÞÑ p1`}ξ}2q´1}ϕ̂pξq} in three dimensions. Let λ denote
the function ξ ÞÑ }ξ}. By the Cauchy-Schwarz inequality we have (basically following the
proof from Theorem 3.5)

}ϕ̂}1 “ |pp1` λ
2
q
´1, p1` λ2qϕ̂q ď c}pλ2 ` 1qϕ̂} ď c}λ2ϕ̂}2 ` c}ϕ̂}2 (3.48)

where
c2 “ }p1` λ2q´1}2 (3.49)

As in Theorem 3.5, for any r ą 0 and any function ψ P S let ψr be defined by

φ̂rpξq “ r3φ̂prξq (3.50)

Then
}ψ̂r}1 “ }ψ̂}1, }ψ̂r}2 “ r

3
2 }ψ̂}2, and }λ2ψ̂r}2 “ r´

1
2 }λ2ψ̂}2 (3.51)

Applied to ϕ this gives
}ϕ̂}1 ď cr´

1
2 }λ2φ̂}2 ` cr

3
2 }φ̂}2 (3.52)

By Plancherel theorem

}λ2φ̂}2 “ }∆ϕ}2 and }ϕ̂}2 “ }ϕ}2 (3.53)

This shows that any V P L2
`

R3
˘

is a Kato potential. We also note that for V P

LinftypXq, that
}V ϕ}2 ď }V }8}ϕ} (3.54)

If we put these two Kato potentials together, we see that if V “ V1 ` V2 where V1 P
L2pR3q and V2 P L

8
`

R3
˘

then V is a Kato potential. Now we state and prove Theorem 3.10.
Theorem 3.10 essentially is utilizes the notion of Kato potential, hence why we defined it
first, for generality purposes.

Theorem 3.11 : Let V P L2
`

R3
˘

` L8
`

R3
˘

be real-valued. Then ´∆ ` V pxq is essen-
tially self-adjoint on C80

`

R3
˘

and self-adjoint on Dp´∆q.

Proof. Since V is real-valued, the opeartor of multiplication by V is self-adjoint on

DpV q “
 

ϕ|ϕ P L2
`

R3
˘

, V ϕ P L2
`

R3
˘(

(3.55)

Let V “ V1 ` V2 with V1 P L
2
`

R3
˘

and V2 P L
8
`

R3
˘

. Then

}V ϕ}2 ď }V1}2}ϕ}8 ` }V2}8}ϕ}2 (3.56)

so DpV q Ą C80
`

R3
˘

. By Theorem 3.5 and more relevantly, Lemma 3.10, given any a ą 0,
there is b ą 0 so that

}ϕ}8 ď a}∆ϕ}2 ` b}ϕ}2 (3.57)
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for all ϕ P C80
`

R3
˘

. This inequality and p3.56q give

}V ϕ}2 ď a}V1}2} ´∆ϕ}2 `
`

b` }V2}8
˘

}ϕ}2 (3.58)

for all ϕ P C80
`

R3
˘

. Thus V is ´∆-bounded with arbitrarily small bound on C80
`

R3
˘

. Since
´∆ is essentially self-adjoint on C80

`

R3
˘

, then by the Kato-Rellich theorem (Theorem 3.7)
implies that ´∆` V is also essentially self-adjoint on C80

`

R3
˘

We note that Coulomb type potentials satisfy this Lemma 3.9 and Theorem 3.11.

The function
V pxq “

}x}
(3.59)

on R3 can be written as a sum V “ V1 ` V2 where V1 P L
2
`

R3
˘

and V2 P L
8
`

R3
˘

and so is
a Kato potential.

Suppose that X “ X1 ‘ X2 and V depends only on the X1 component where it is a Kato
potential. Then by Fubini’s theorem implies that V is a Kato potential if and only if V is a
Kato potential on X1. So, if X “ R3n and we write x P X as x “ pr1, . . . , xNq where xi P R3

then

Vij “
1

}xi ´ xj}
(3.60)

are Kato potentials as are any linear combination of them. So, the total Coulomb potential
of any system of charged partiles is a Kato potential. We note that H is the translationally
invariant, and separated operator. Thus the restriction of this potential to the subspace
tx|

ř

mixi “ 0u is a Kato potential. This is the ”atomic potential” about the COM.

We now come down to the final theorem that will now aid in synthesizing everything
we’ve done in this Section and thereby proving Theorem 3.2. The theorem is called Kato’s
theorem as mentioned in [4]. This is the main synthetic argument that Kato implements to
imply that H in p3.16q is self-adjoint.

Theorem 3.12 (Kato’s theorem): Let tVku
m
k“1 be a collection of real-valued measurable

functions each of which is in L2
`

R3
˘

`L8
`

R3
˘

. Let Vkpykq be the multiplication operator on
L2

`

R3n
˘

obtained by choosing yk to be three coordinates of R3n. Then ´∆ `
řm
k“1 Vkpykq

is essentially self-adjoint on C80 pR3nq, where ∆ denotes the Laplacian on R3n.

Proof. First we consider one of the functions Vk separately. By rotation of variables we may
assume the variables in Vkp¨q are x1, x2, x3. (This is because } ¨}2, } ¨}8, and ´∆ are invariant
under rotations of coordinates.) Let ∆1 denote the Laplacian with respect to x1, x2, x3. By
the estimate p3.57q, together with the ”equivalence” of the bounds in p3.32q and p3.33q, we
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have for all ϕ P C80 pR3nq,

}Vkϕ}
2

L2

`

R3n

˘ ďa2
ż

| ´∆1ϕpx1, . . . , x3n|
2dx1 ¨ ¨ ¨ dx3n

` b2
ż

|ϕpx1, . . . , x3nq|
2dx1 ¨ ¨ ¨ dx3n

(3.61)

“ a2
ż

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

i“1

p2i ϕ̂pp1, . . . , p3nq

ˇ

ˇ

ˇ

ˇ

ˇ

2

dp1 ¨ ¨ ¨ dp3n ` b
2
}ϕ}2 (3.62)

ď a2
ż

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

p2i ϕ̂pp1, . . . , p3nq

ˇ

ˇ

ˇ

ˇ

ˇ

2

dp1 ¨ ¨ ¨ dp3n ` b
2
}ϕ}2 (3.63)

“ a2} ´∆}2 ` b2}ϕ}2 (3.64)

Thus, using the Schwarz inequality, one easily concludes that

›

›

›

›

›

m
ÿ

k“1

Vkpykqϕ

›

›

›

›

›

2

ď m2a2} ´∆ϕ}2 `m2b2}ϕ}2 (3.65)

for all ϕ P C80 pR3nq. Since a may be chosen as small as we like, we conclude that
řm
k“1 Vkpykq

is infinitesimally small with respect to ´∆. Thus, by the Kato-Rellich theorem, ´∆ `
řm
k“1 Vkpykq is essentially self-adjoint on C80 pR3q

The proof that H is essentially self-adjoint on C80
`

R3n
˘

follows from Theorem 3.12 by
just inducting the argument for all Vk and substituting n “ 3n in C80 pRnq the core of ´∆.

4 Concluding Remarks

The self-adjointness of the Coulomb Hamiltonian operator was one of the most founda-
tional properties that needed to be established in many-body quantum physics and quantum
chemistry, as a lot of pertinent calculations and experimental treatments of the subject relied
on it. One may still ask, why worry about this property of the Coulomb Hamiltonian being
essentially self-adjoint? Well if the operator is not self-adjoint then it could support solutions
interpretable as a particle falling into a singularity or getting to infinity in a finite time, and
these are unacceptable as physical solutions. Another reason is that now one can apply von
Neumann’s spectral theory for unbounded operators, thereby developing some mathematical
and physical understanding of the system.
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