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1 Introduction

The purpose of this project is to develop some of the basic theory of semiclas-
sical microlocal analysis. Semiclassical analysis is motivated in large part by
quantum mechanics. It is formulated in order to understand the relationships
between dynamical systems and the behaviour of solutions of linear partial
differential equations containing a small positive parameter ~.

A fundamental motivating question is how does classical dynamics deter-
mine the behaviour as ~→ 0 of Schrodinger’s equation

i~∂tu = −~2∆u+ V (x)u,

and the corresponding eigenvalue problem

−~2∆u+ V (x)u = Eu.

In this project, we are mostly concerned with the converse to this ques-
tion, that is to say given mathematical objects associated with classical me-
chanics (i.e. classical observables), what is a reasonable and useful way to
“quantize” them?

It should be noted that the techniques of semiclassical analysis apply in
other settings and for other types of partial differential equations, but we
will not have time to discuss them here.

The basic layout of this project is as follows. We first introduce the semi-
classical Fourier transform, a generalisation of the classical Fourier transform
that includes dependence on the small parameter ~. We then move on to sta-
tionary phase asymptotics, a critical technique for understanding the types of
integrals that one deals with in this subject. Next we discuss various meth-
ods of quantizing our “symbols” (to be made more precise later, basically
classical observables), the most important of which is the Weyl quantization.
In the next section we prove formulae for the composition of operators. The
penultimate step is to generalize our symbols classes so that we may do more
refined analysis.

Finally, with applications in mind, we build operators on L2 rather than
S. We finish by proving the main results of the paper, the weak and sharp
G̊arding inequalities.

It should be noted that, unless stated otherwise, the material here is
adapted from Evans and Zworski’s Lectures on semiclassical analysis [EZ10].
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2 The Semiclassical Fourier Transform

For use later on, we define here the semiclassical Fourier transform for ~ > 0,
acting on functions in the Schwartz class:

φ̂(ξ) = F~φ(ξ) :=

∫
Rn
e−

i
~ 〈x,ξ〉φ(x)dx (1)

where 〈· , ·〉 represents the usual Euclidean inner product. The inverse is
given by

F~
−1ψ(x) :=

1

(2π~)n

∫
Rn
e
i
~ 〈x,ξ〉ψ(ξ)dξ. (2)

This semiclassical Fourier transform has analogues to properties of the
usual transform. Indeed, we have the following:

Theorem 1. The following properties hold:

(~Dξ)
αF~φ = F~((−x)αφ),

F~((~Dx)
αφ) = ξαF~φ,

and the ~-Plancherel theorem:

||φ||L2 =
1

(2π~)n/2
||F~φ||L2 .

An interesting theorem that can now be proven is the uncertainty princi-
ple, which gives information on the extent to which it is possible to localize
calculations in the x and ξ variables. We refer the reader to the proof given
in [EZ10].

Theorem 2. The Uncertainty principle We have

~
2
||f ||L2 ||F~g||L2 ≤ ||xjf ||L2 ||ξjF~f ||L2 , (j = 1, · · · , n) (3)

3 Stationary Phase Asymptotics

In this section we develop the techniques of stationary phase in order to
better understand the right hand side of (1), which will be necessary for
some applications later.
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We define for ~ > 0 the following oscillatory integral for a ∈ C∞c (Rn) and
φ ∈ C∞(Rn):

I~ = I~(a, φ) :=

∫
Rn
e
iφ
~ adx. (4)

Right away we may derive the following asymptotic estimate:

Lemma 1. If ∂φ′ 6= 0 on K := supp(a), then

I~ = O(h∞) as h→ 0.

To clarify notation, this means that we must show that for all N ∈ N there
exists a constant CN > 0 such that

|I~| ≤ CN~N
∑
|α|≤N

sup
Rn
|∂αa|,

where C depends only on K and n.

Proof. Define the operator L as

L :=
~
i

1

φ′(x)
∂x.

Note that this is well defined for x ∈ K, since φ′ 6= 0 there. Furthermore,

L

(
eiφ

~

)
= e

iφ
~ .

We note that LN(eiφ/~) = eiφ/~ for all N ∈ N. Hence,

|I~| =
∣∣∣∣∫ LN

(
e
iφ
~

)
adx

∣∣∣∣ =

∣∣∣∣∫ eiφ/~(L∗)Nadx

∣∣∣∣ .
Since a ∈ C∞ we have that L∗a = −~

i
∂x

(
a
φ′

)
is of order ~. Hence, |I~| ≤

CN~N .

A theorem from analysis, the Morse lemma, will be needed to prove the
important theorem from this section, the stationary phase asymptotics. We
will state the Morse lemma now. For a proof see, for example, [Hör85].
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Theorem 3. (Morse Lemma) Let φ : Rn → R be smooth with a nondegen-
erate critical point at x0 (i.e. ∂φ(x0) = 0, det ∂2φ(x0) 6= 0). Then there exist
neighbourhoods U of 0 and V of x0 and a diffeomorphism

κ : V → U

such that

(φ ◦ κ−1)(x) = φ(x0) +
1

2
(x21 + · · ·+ x2r − x2r+1 − · · · x2r), (5)

where r is the number of positive eigenvalues of ∂2φ(x0).

We are now ready to prove the stationary phase theorem. Note that
stationary phase has been applied to many problems in mathematics and
physics. Although the proof to be presented here is one of two proofs in
[EZ10], some other good references for stationary phase and other asymp-
totic methods (including a generalization of stationary phase, the method of
steepest descent) are [Erd55] and [Hör90].

Theorem 4. (Stationary phase asymptotics) Let a ∈ C∞c (Rn). Let x0 ∈
K = supp(a) and

∂φ(x0) = 0, det(x0) 6= 0,

and that ∂φ(x) 6= 0 on K\{x0}. Then there exist for k = 0, 1, . . . differential
operators A2k(x,D) of order less than or equal to 2k such that for each N∣∣∣∣∣I~ −

(
N−1∑
k=0

A2k(x,D)a(x0)~k+
n
2

)
e
i
~φ(x0)

∣∣∣∣∣ ≤ CN~N+n
2

∑
0≤m≤2N+n+1

sup
Rn
|∂αa|.

(6)

and hence, in particular,

A0 = (2π)n/2| det ∂2φ(x0)|−1/2e
iπ
4

sgn ∂2φ(x0), (7)

which leads to the asymptotic estimate

I~ = (2π~)n/2| det ∂2φ(x0)|−1/2e
iπ
4

sgn det2 φ(x0)e
iφ(x0)

~ a(x0) +O(~(n+2)/2), (8)

as ~→ 0.
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Proof. Without loss of generality, we assume x0 = 0 and φ(x0) = 0. After
introducing a cutoff function χ, we apply Morse lemma, and the rapid decay
lemma, lemma 1 to get

I~ =

∫
Rn
e
iφ
~ adx =

∫
Rn
e
i
~ 〈Qx,x〉udx+O(h∞),

with

Q =

(
I O
O −I

)

and u ∈ C∞. In Q the upper identity matrix is r × r and the lower
identitiy matrix is (n − r) × (n − r). Using some straightforward Fourier
transform computations (for the details of which see the Fourier transform
chapters of [EZ10]), we get

I~ =

(
~
2π

)n/2
e
iπ
4 sgnQ

∫
Rn
e−

i~
2 〈Q−1ξ,ξ〉û(ξ)dξ.

Setting:

J(~, u) :=

∫
Rn
e−

i~
2 〈Q−1ξ,ξ〉û(ξ)dξ;

then

∂~J(~, u) =

∫
Rn
e−

i~
2 〈Q−1ξ,ξ〉

(
− i

2

〈
Q−1ξ, ξ

〉
û(ξ)

)
dξ = J(~, Pu),

where

P := − i
2

〈
Q−1Dx, Dx

〉
.

We hence get,

J(~, u) =
N−1∑
k=0

~k

k!
J(0, P ku) +

~N

N !
RN(~, u),

with the remainder term

RN(~, u) := N

∫ 1

0

(1− t)N−1J(t~, PNu)dt.
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Then using the standard Fourier estimate ||û||L1 ≤ C sup|α|≤n+1 ||∂αu||L1 , we
get

|RN | ≤ CN

∣∣∣∣∣∣P̂Nu
∣∣∣∣∣∣
L1
≤ CN sup

|α|≤2N+n+1

|∂αa|.

In the next sections we will be mainly interested in the particular phase
φ(x, y) = 〈x, y〉.

4 Quantization formulas

In the last section we developed some theory concerning the semiclassical
Fourier transform, which allows us to move between x and ξ variables. It is,
however, desirable to be able to work with both sets of variables simultane-
ously. We will associate to “symbols” (this term will be made more precise
soon) operators via various quantization schemes, and the resulting operators
applied to functions can give information in the full (x, ξ) space, allowing us
to do things such as localization in phase space.

After introducing quantization, one needs to work out the resulting sym-
bol calculus, i.e. the rules for manipulating symbols and their associated
operators.

4.1 Quantization schemes

For the time being, we shall call any function a ∈ S = S(R2n), a = a(x, ξ) a
symbol.

We begin by defining a very useful quantization, called the Weyl quanti-
zation. We define the Weyl quantization of a symbol a, denoted as aw(x, ~D)
by its action on u ∈ S(Rn):

aw(x, ~D)u(x) :=
1

(2π~)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a

(
x+ y

2
, ξ

)
u(y)dydξ (9)

This standard quantization of a is given by:

a(x, ~D)u(x) :=
1

(2π~)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a(x, ξ)u(y)dydξ (10)

Most generally, for any t ∈ [0, 1] we define:

Opt(a)u(x) :=
1

(2π~)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a(tx+ (1− t)y, ξ)u(y)dydξ (11)
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Sometimes it is convenient to write Op(a) for Op1/2(a), and hence Op(a) =
aw(x, ~D). Later on, in section 7,I we shall define another useful quantization,
called the anti-wick quantization, which we shall use to prove the semiclassical
sharp G̊arding inequality.

As an example, we shall calculate Opt(a) for the symbol a(x, ξ) = ξα for
some multiindex α. We observe,

Opt(a)u(x) =
1

(2π~)n

∫
Rn

∫
Rn
a(tx+ (1− t)y, ξ)e

i
~ 〈x−y,ξ〉u(y)dydξ

=
1

(2π~)n

∫
Rn

∫
Rn
ξαe

i
~ 〈x−y,ξ〉u(y)dydξ

=
1

(2π~)n

∫
Rn

∫
Rn
ξαe

i
~ 〈x−y,ξ〉u(y)dξdy (12)

=

∫
Rn
F−1~ (ξα)(x− y)u(y)dy

=

∫
Rn

(~D)αδ(x− y)u(y)dy

= (~D)αu(x)

where the interchange of the order of integration on line (12) is justified
because uξα is a Schwartz function, and so the integrand is absolutely inte-
grable. Hence, we observe that Opt(a) = (~D)α.

The following theorems give some important facts about this quantization
scheme:

Theorem 5. If a ∈ S, then Opt(a) can be defined as an operator that maps
S ′ to S, and the mapping Opt(a) : S ′ → S, for 0 ≤ t ≤ 1 is continuous.

Theorem 6. Let a ∈ S. Then, for 0 ≤ t ≤ 1 we have Opt(a)∗ = Op1−t(a)
and hence if a is real we have aw(x, ~D)∗ = aw(x, ~D).

Theorem 7. If a ∈ S ′, then Opt(a) can be defined as an operator that maps
S to S ′, and the mapping Opt(a) : S → S ′ is continuous.

5 Composition of operators

In this section we will discuss the problem of composition of operators. That
is, to show that if a and b are symbols, then there exists a symbol c, such that

7



aw(x, ~D) ◦ bw(x, ~D) = cw(x, ~D) and we write c = a#b. We first consider
linear symbols. Consider the following theorem

Theorem 8. Let (x∗, ξ∗) ∈ R2n and define the linear symbol

l(x, ξ) := 〈x∗, x〉+ 〈ξ∗, ξ〉 . (13)

Then,

Opt(l)u = 〈x∗, x〉u+ 〈ξ∗, ~D, u〉 (0 ≤ t ≤ 1). (14)

Proof. We begin by showing that Opt(l) does not depend on t:

d

dt
Opt(l)u =

1

(2π~)n
d

dt

∫
Rn

∫
Rn
e
i
~ 〈x−y,ξ〉(〈x∗, tx+ (1− t)y〉+ 〈ξ∗, ξ〉)u(y)dydξ

=
1

(2π~)n

∫
Rn

∫
Rn
e
i
~ 〈x−y,ξ〉 〈x∗, x− y〉u(y)dydξ

=
~

(2π~)n

∫
Rn

〈
x∗, Dξ

∫
Rn
e
i
~ 〈x−y,ξ〉u(y)dy

〉
dξ

=
~

(2π~)n

∫
Rn

〈
x∗, Dξ(e

i
~ 〈x−y,ξ〉û(ξ))

〉
dξ.

Now, since û(ξ) decays rapidly as |ξ| → ∞ the last expression vanishes, and
hence we see that indeed Opt(l) is independent of t. So for all 0 ≤ t ≤ 1,
Opt(l)u = Op1(l)u = 〈x∗, x〉u+ 〈ξ∗, ~D〉u.

Having proven this result, we will naturally just write l(x, ~D) for lw(x, ~D).
We are now ready to prove the rule for composition with a linear symbol.

Theorem 9. Let b ∈ S. Then,

l(x, ~D)bw(x, ~D) = cw(x, ~D), (15)

where

c := lb+
~
2i
{l, b}. (16)

Recall that {·, ·} is the poisson bracket defined by

{l, b} = 〈∂ξl, ∂xb〉 .
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Proof. By the just proven theorem 8 we know that

l(x, ~D) = 〈x∗, x〉+ 〈ξ∗, ~D〉 .

By definition we have that

〈x∗, x〉 bw(x, ~D)u =
1

(2π~)n

∫
Rn

∫
Rn
〈x∗, x〉 e

i
~ 〈x−y,ξ〉b

(
x+ y

2
, ξ

)
u(y)dydξ.

The key observation is that

x− y
2

e
i
~ 〈x−y,ξ〉 =

~
2i
∂ξ

(
e
i
~ 〈x−y,ξ〉

)
.

Hence, integrating by parts gives

〈x∗, x〉bw(x, ~D) =

1

(2π~)n

∫
Rn

∫
Rn
e
i
~ 〈x−y,ξ〉

(〈
x∗,

x− y
2

〉
b− ~

2i
〈x∗, ∂ξb〉

)
u(y)dudξ.

In addition to the above, we have

〈ξ∗, ~Dx〉bw(x, ~D)

=
1

(2π~)n

∫
Rn

∫
Rn
〈ξ∗, ~Dx〉

(
e
i
~ 〈x−y,ξ〉b

(
x+ y

2
, ξ

))
u(y)dydξ

=
1

(2π~)n

∫
Rn

∫
Rn
e
i
~ 〈x−y,ξ〉

(
〈ξ∗, ξ〉 b+

~
2i
〈ξ∗, ∂xb〉

)
u(y)dydξ.

Adding these last equations gives

l(x, ~D)bw(x, ~D)

= (〈x∗, x〉+ 〈ξ∗, ~D〉)bw(x, ~D)

=
1

(2π~)n

∫
Rn

∫
Rn
e
i
~ 〈x−y,ξ〉((
〈ξ∗, ξ〉+

〈
x∗,

x+ y

2

〉)
b+

~
2i
{l, b}

)
u(y)dydξ

proving the result.
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It is now quick to show that Op
(
e−

i
~ l
)

= e−
i
~ l(x,~D), and to prove the

representation formula

aw(x, ~D) =
1

(2π~)2n

∫
Rn
â(l)e

i
~ l(x,~D)dl (17)

where we define

â(l) :=

∫
Rn
e−

i
~ l(x,ξ)a(x, ξ)dxdξ.

The results from this section give the necessary theory to prove the theorem
for composition of Weyl quantization. We present the theorem here without
proof. The proof is very long, and I refer the read to [EZ10] for the proof.

Theorem 10. Let a, b ∈ S. We then have

aw(x, ~D) ◦ bw(x, ~D) = cw(x, ~D)

for the symbol
c = a#b,

where

a#b(x, ξ) := e
i~
2
σ(Dx,Dξ,Dy ,Dη)(a(x, ξ)b(y, η))|x=y,ξ=η, (18)

where σ(Dx, Dξ, Dy, Dη) := 〈Dξ, Dy〉 − 〈Dx, Dη〉 . We also have an integral
representation formula

a#b(x, ξ)

=
1

(π~)2n

∫
Rn

∫
Rn

∫
Rn

∫
Rn
a(x+ z, ξ + ζ)b(x+ y, ξ + η)

e
2i
~ σ(y,η;z,ζ)dydηdzdζ, (19)

6 General symbol classes

We will now extend our symbol calculus to symbols a = a(x, ξ, ~), depending
on a parameter ~. We will need a few definitions to do this.

Definition 1. A function m : R2n → (0,∞) is called an order function if
there exist constants C,N such that

m(z) ≤ C〈z − w〉Nm(w),

for all w, z ∈ R2n.
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Some examples of order functions are m(z) ≡ 1 and m(z) = 〈z〉. We also
note that if m1,m2 are order functions, then so is m1m2.

Definition 2. Given some order function m, on R2n we define the corre-
sponding symbol class S(m) by

S(m) := {a ∈ C∞ : for each multiindex

α there exists a constant Cα so that |∂αa| ≤ Cαm }.
(20)

We also define two other associated symbol classes, Sk(m) and Skδ (m) by

Sk(m) := {a ∈ C∞ : |∂αa| ≤ Cα~km for all multiindices α} (21)

Skδ (m) := {a ∈ C∞ : |∂αa| ≤ Cα~−δ|α|−km for all multiindices α} (22)

In the above definition, we see that k describes how singular the symbol a
is as ~→ 0 and that δ allows for increasing singularity of higher derivatives.
We also define the natural class of symbols S−∞(m) by

S−∞(m) := {a ∈ C∞ : for each α and N , |∂αa| ≤ Cα,N~Nm}

Hence, if a is a symbol belonging to S−∞(m), then a and all of its derivatives
are O(~∞) as ~→ 0.

In order to simplify notation, note that if the order function is the con-
stant function m ≡ 1, we will just write Sk := Sk(1) and Skδ := Skδ (1). We
will also omit zero superscripts.

We have many of the same results about quantization for these general
symbol classes. We will now give a theorem about thw Weyl quantization
for a symbol in the class Sδ(m).

Theorem 11. Let a ∈ Sδ(m), where m is some order function. Then

Op(a) : S → S.

Proof. We may, without loss of generality, rescale to ~ = 1 (explanation on
page 52 of [EZ10]). Let

Op(a)u(x) =
1

(2π)n

∫
Rn

∫
Rn
ei〈x−y,ξ〉a

(
x+ y

2
, ξ

)
u(y)dξdy,
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for u ∈ S. Furthermore, we see that, for the operator

L1 :=
1 + 〈x− y,Dξ〉

1 + 〈x− y〉2

we have that L1e
i〈x−y,ξ〉 = ei〈x−y,ξ〉. and for

L2 :=
1− 〈ξ,Dy〉

1 + 〈ξ〉2
,

we have that L2e
i〈x−y,ξ〉 = ei〈x−y,ξ〉. Now, observe that

xj Op(a)u =
1

(2π)n

∫
Rn

∫
Rn

(Dξj + yj)e
i〈x−y,ξ〉audξdy.

By integrating by parts, we see that xα Op(a) : S → L∞. Now since

Opt(a)
(
e−i(

1
2
−t)DxDξa

)
= Op(a),

we see that

Dxj Op(a)u = Dxj Op0

(
e−

i
2
DxDξa

)
u

= Dxj

(
1

(2π)n

∫
Rn

∫
Rn
e−

i
2
DxDξa(y, ξ)ei〈x−y,xi〉u(y)dξdy

)
=

1

(2π)n

∫
Rn

∫
Rn
e−

i
2
DxDξa(y, ξ)(−Dyje

i〈x−y,ξ〉)u(y)dξdy.

Another integration by parts shows that Dβ Op(a) : S → L∞. These two
estimates together show us that Dβxα Op(a) : S → L∞ for all multiindices
α, β, and hence Op(a) : S → S.

7 Operators on L2

The analysis that has been developed so far has built operators on either S
or its dual S ′. However, since L2 is a very important space in applications,
we now wish to develop some theory in the special case of functions in L2.
The ultimate goal of this section is to prove the semiclassical version of the
sharp G̊arding inequality, which like its classical counterpart is essential in
the analysis of pseudodifferential operators.
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For the time being we shall take ~ = 1. Let χ ∈ C∞c (R2n) be such that

0 ≤ χ ≤ 1, χ ≡ 0 on R2n\B(0, 2),

and ∑
α∈Z2n

χα ≡ 1,

where χα := χ(· −α) is χ shifted by the lattice point α ∈ Z2n. We introduce
the notation

aα := χαa;

and hence
a =

∑
a∈Z2n

aα.

In addition, we define

bαβ := aα#aβ(α, β ∈ Z2n).

We now present and prove the following estimate:

Theorem 12. For each N and each multiindex γ, we have that

|∂γbαβ(z)| ≤ Cγ,N〈α− β〉−N〈z −
α + β

2

−N
〉, (23)

where z = (x, ξ) ∈ R2n.

Proof. We have the following explicit formula:

bαβ(z) =
1

π2n

∫
R2n

∫
R2n

eiφ(w1,w2)aα(z − w1)αβ(z − w2)dw1dw2,

where
φ(w1, w2) = −2σ(x, ξ, y, η) = 2 〈x, η〉 − 2 〈ξ, y〉 ,

and
w = (w1, w2), w1 = (x, ξ), w2 = (y, η).

Choosing ζ : R4n → R such that 0 ≤ ζ ≤ 1, ζ ≡ 1 on B(0, 1), ζ ≡ 0 on
R4n −B(0, 2). We can then decompose bαβ(z) as follows

bαβ(z) = cn

∫
Rn

∫
Rn
eiφζ(w)aα(z − w1)aβ(z − w2)dw1dw2

+ cn

∫
Rn

∫
Rn
eiφ(1− ζ(w))aα(z − w1)aβ(z − w2)dw1dw2

=: A+B

13



We will now estimate A and B separately. Clearly, for A we have

|A| ≤
∫∫
{|w|≤2}

|aα(z − w1)||aβ(z − w2)|dw1dw2.

But this integrand equals

χ(z − w1 − α)χ(z − w2 − β)|a(z − w1)||a(z − w2)|

which vanishes unless
|z − w1 − α| ≤ 2

and also
|z − w2 − β| ≤ 2.

This implies that
|α− β| ≤ 4 + |w1|+ |w2| ≤ 8

and ∣∣∣∣z − α + β

2

∣∣∣∣ ≤ 4 + |w1|+ |w2| ≤ 8.

This then gives

|A| ≤ CN〈α− β〉−N〈z −
α + β

2
〉−N

for all N . A similar computation shows

|∂γA| ≤ CN,γ〈α− β〉−N〈z −
α + β

2
〉−N .

To estimate B we observe that

∂φ(w1, w2) = 2(η,−y,−ξ, x),

and hence
|∂φ(w)| = 2|w|.

We also have that, for the operator

L :=
〈∂φ,D〉
|∂φ|2

,
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we have Leiφ = eiφ. By using a usual integration by parts argument coupled
with the fact that the integrand in B vanishes for |w| ≥ 1 we get the following
estimate for B:

|B| ≤ CM

∫
R2n

∫
R2n

〈w〉−MAα(z − w1)Aβ(z − w2)dw1dw2

and that suppAα ⊆ B(α, 2), suppAβ ⊆ (β, 2). So the integrand will vanish
unless

1

c
〈w〉 ≤ 〈α− β〉, 〈z − α + β

2
〉 ≤ C〈w〉.

Hence, for sufficiently large M we have

|B| ≤ CM〈α− β〉−N〈z −
α + β

2
〉−N

∫∫
〈w〉2N−Mdw1dw2

≤ CM〈α− β〉−N〈z −
α + β

2
〉−N .

Similarly,

|∂γB| ≤ CN,γ〈α− β〉−N〈z −
α + β

2
〉−N .

Theorem 13. (Operator norms) For each N ,

||Op(bαβ)||L2→L2 ≤ CN〈α− β〉−N .

Proof. Recall that we earlier demonstrated that

Op(a) =
1

(2π)2n

∫
R2n

â(l) Op(eil)dl.

We also know that Op(eil) is unitary on L2. Hence,

||Op(a)||L2→L2 ≤ C

∫
R2n

|â(l)|dl.

15



Hence for M > 2n we can make the estimate, using theorem 12:

||O(bαβ)||L2→L2 ≤ C
∣∣∣∣∣∣b̂αβ∣∣∣∣∣∣

L1

≤ C
∣∣∣∣∣∣〈ξ〉M b̂αβ∣∣∣∣∣∣

L∞

≤ C max
|γ|≤M

∣∣∣∣∣∣D̂γbαβ

∣∣∣∣∣∣
L∞

≤ C max
|γ|≤M

||Dγbαβ||L1

≤ C sup
|γ|≤M

∣∣∣∣〈z〉MDγbαβ
∣∣∣∣
L1

≤ C〈α− β〉−N .

Now, we can prove the following very important estimate:

Theorem 14. (Calderon-Vaillancourt) If 0 ≤ δ ≤ 1/2 and we have a symbol
a ∈ Sδ then

Op(a) : L2(Rn)→ L2(Rn)

is bounded. Moreover, we have the estimate

||Op(a)||L2→L2 ≤ C
∑
|α|≤M

|∂αa|.

Proof. Since we have that

Op(bαβ) = A∗αAβ,

by the previous theorem on operator norms we have that

||A∗αAβ||L2→L2 ≤ C〈α− β〉−N .

Hence,

sup
α

∑
β

∣∣∣∣AαA∗β∣∣∣∣1/2 ≤ C
∑
β

〈α− β〉−N/2 ≤ C.

Similarly,

sup
α

∑
β

||A∗αAβ||
1/2 ≤ C.
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The result now follows from the Cotlar-Stein theorem (theorem 6 in appendix
B of [EZ10]). Note that it was necessary that δ ≤ 1/2 because it is for
precisely these cases that we can take ~ = 1 via scaling without loss of
generality.

A corollary of this theorem is the following:

Theorem 15. Let a, b ∈ Sδ for 0 ≤ δ < 1/2. Then,

||awbw − (ab)w||L2→L2 = O(~1−2δ),

as ~→ 0.

For our purposes we have developed a sufficiently general theory for the
quantizations of symbols a belonging to appropriate symbol classes. We will
now prove some nice properties of elliptic, respectively non-negative, symbols
cumulating in showing the easy, respectively sharp, semiclassical G̊arding
inequalities. First we need a basic theorem of elliptic symbols.

Definition 3. A symbol a is said to be elliptic if there exists a constant γ > 0
such that

|a| ≥ γ > 0, on R2n.

Before proving the invertability of elliptic symbols, we recall the following
theorem from functional analysis:

Theorem 16. Let X, Y be Banach spaces and suppose A : X → Y is
a bounded linear operator. suppose there exists bounded linear operators
B1, B2 : Y → X such that

AB1 = I +R1 on Y,

and
B2A = I +R2 on X,

where
||R1|| < 1, ||R2||< 1.

Then A is invertible.

Theorem 17. (Invertability of elliptic symbols). Let a ∈ Sδ for 0 ≤ δ < 1
2

and assume a to be elliptic. Then for some ~0 > 0 we have that Op(a)−1

exists as a bounded linear operator on L2(Rn), provided that 0 < ~0.

17



Proof. Since a is nonvanishing we know that it is pointwise invertible. Let
b := 1

a
. b ∈ Sδ. We note that we can write

a#b = 1 + r1, r1 ∈ S2δ−1
δ .

By the same token,
b#a = 1 + r2, r2 ∈ S2δ−1

δ .

So, letting A := Op(a), B := Op(b), R1 := Op(r1), R2 := Op(r2) we have the
relations

A ·B = I +R1,

B · A = I +R2,

and we have

||R1||L2→L2 = O(~1−2δ) ≤ 1

2
,

||R2||L2→L2 = O(~1−2δ) ≤ 1

2
,

when 0 < ~ ≤ ~0. We conclude that A has an approximate left and right
inverses. Hence, by the above theorem we see that A−1 = Op(a)−1 exists.

We are now ready to prove the G̊arding inequalities. We start with the
easier version for elliptic symbols.

Theorem 18. (“Easy” G̊arding inequality) Assume a = a(x, ξ) is a real-
valued symbol in S and that

a ≥ γ > 0 on R2n.

Then for all ε > 0 there exists ~0 = ~0(ε) > 0 such that

〈aw(x, ~D)u, u〉 ≥ (γ − ε) ||u||2L2

for all 0 < ~ ≤ ~0, u ∈ C∞c (Rn).

Proof. We begin by showing that (a − λ)−1 ∈ S if λ < γ − ε. Letting
b := (a− λ)−1, then

(a− λ)#b = 1 +
~
2i
{a− λ, b}+O(~2) = 1 +O(~)2

18



(here we used the fact that the poisson bracket term vanishes because b is a
function of a− λ. Thus,

(aw − λ) ◦ bw = I +O(~2)L2→L2 .

This means that bw is an approximate inverse of aw−λ. The same calculation,
mutatis mutandis, shows that bw is also an approximate left inverse. So, by
the approximate inverse theorem 16 we know that aw − λ is invertible for
each λ < γ − ε. As a consequence, we have

spec(aw) ⊂ [γ − ε,∞).

Then, by the spectral theory of self-adjoint operators (see, for example, ap-
pendix B theorem 1 in [EZ10]) we have

〈awu, u〉 ≥ (γ − ε) ||u||2L2

for all u ∈ C∞c (Rn).

We are now ready to prove our main result, the sharp semiclassical
G̊arding inequality. To my knowledge, there are at least two proofs of this
theorem. The one given in [EZ10] uses a gradient estimate and the sym-
bol calculus developed in this paper to derive the inequality. It is not that
proof that shall be given here, however. The proof that shall be presented
here introduces a new, but related quantization, the so called (semiclassical)
anti-Wick quantization, Opaw(a), of a symbol a. This quantization is useful
in other semiclasscal results, and so we use the desire to prove the sharp
G̊arding inequality as a good excuse to introduce it. The outline of the proof
is taken in part from [Mar02] and in part from [Bro].

A natural question that can be asked regarding these quantization schemes
is the following: given a symbol a ≥ 0, is it true that Op(f) is positive-
definite? For the quantizations developed so far, the answer to this is no.
However, we shall now introduce a quantization for which this property holds,
and it is precisely this property that we later explot to prove the sharp
G̊arding inequality.

The goal is to prove the following theorem:

Theorem 19. Let a ∈ S0(1) and a(x, ξ, ~) ≥ 0. Then there exists C, ~0 > 0
such that for ~ ∈ [0, ~0],

〈aw(x, ~Dx)u, u〉 ≥ −C~ ||u||2L2 .
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I will break down the proof of the theorem into several steps. We begin
by defining, for a ∈ S0(1),

ã :=
1

(π~)n

∫
Rn

∫
Rn
a(y, η)e−(|x−y|

2+|ξ−η|2)/~dydη.

and we observe that ã(x, ξ) = a ∗ G(x, ξ) as a convolution in R2n where
G = e−(|x|

2+|ξ|2).

Lemma 2. For a ∈ S0(1), we have that ã is bounded, and in fact ã ∈ S0(1).

Proof. Observe that

|ã| = 1

(π~)n

∣∣∣∣∫
Rn
a(y, η)G(x− y, ξ − η)dydη

∣∣∣∣
≤ 1

(π~)n

∫
Rn

∫
Rn
CG(x− y, ξ − η)dydη (24)

<∞ (25)

where the last line follows because G is integrable. Also note that the con-
stant C from line (24) is the constant bounding a that exists since a ∈ S0(1).

Now let α ∈ N2n. Then we have that

|∂αã| =
∣∣∣∣ 1

(π~)n
∂α(a ∗G)

∣∣∣∣
=

1

(π~)n
|(∂αa) ∗G| (26)

=
1

(π~)n

∣∣∣∣∫
Rn

∫
Rn

(∂αa(y, η))G(x− y, ξ − η)dydη

∣∣∣∣
≤ 1

(π~)n
Cα

∫
Rn

∫
Rn
G(x− y, ξ − η)dydη (27)

<∞

where we may move the derivative inside on line (26) because G ∈ L1 and
a ∈ C∞. The constant Cα on line (27) are the constants bounding the
derivative ∂αa that exist because a ∈ S0(1).

We may now prove the following proposition relating a and ã.

Proposition 1. For a ∈ S0(1) we have that ã− a = O(~).
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Proof. We use a second order Taylor expansion about (x, ξ) to write the
estimate:

ã(x, ξ)− a(x− y, ξ − η) =

a(x, ξ)−
[∑ ∂a

∂ξj
(x, ξ)ηj −

∑ ∂a

∂xj
(x, ξ)yj

]
− 1

2

∑[
∂2a

∂ξjξk
(x, ξ)ηjηk + 2

∂2a

∂ξj∂xk
(x, ξ)ηjyk +

∂2a

∂xj∂xk
(x, ξ)yjyk

]
− a(x, ξ)

Now we note that, since
∫
G = 1,

|ã− a| = |a− a ∗G|

=

∣∣∣∣a(x, ξ)−
∫

(a(x− y, ξ − η)G(y, η))dydη

∣∣∣∣
=

∣∣∣∣∫ (a(x, ξ)− a(x− y, ξ − η)G(y, η))dydη

∣∣∣∣
≤
∫ ∣∣∣∣[∑ ∂a

∂ξj
(x, ξ)ηj −

∑ ∂a

∂xj
(x, ξ)yj

]∣∣∣∣G(y, η)dydη (28)

+
1

2

∫ ∣∣∣∣∑[
∂2a

∂ξjξk
(x, ξ)ηjηk + 2

∂2a

∂ξj∂xk
(x, ξ)ηjyk +

∂2a

∂xj∂xk
(x, ξ)yjyk

]∣∣∣∣
G(y, η)dydη (29)

We now note that the integrals on line (28) vanish because ηjG(y, η) is an
even function, and similarly for yjG(y, η). We note that we can bound the
first term on line (29) by (note that the others can be bounded by the same
argument) ∫

Rn

∫
Rn

[C1|η|2 + 2C2|η||y|+ C3|y|2]G(y, η)dydη

=

∫
Rn

∫
Rn

[C1|η|2 + 2C2|η||y|+ C3|y|2]e−(|y|
2+|η|2)/~dydη

and now by a change of variables y 7→ ~1/2y, η 7→ ~1/2η in the integral we get
that |ã− a| = O(~).

At this point we are ready to define our quantization.
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Definition 4. We define the quantization Opaw by

Opaw(a) = Opw(ã).

where Opw is the Weyl quantization.

We now observe that because of proposition 1 it follows from the Calderon-
Vaillancourt theorem that in the limit ~0 → 0 we have

||Opaw(a)− aw||L2→L2 = O(~).

We now prove the key property of Opaw.

Proposition 2. Let a ∈ S0(1) and a ≥ 0. Then Opaw(a) ≥ 0.

Proof. We observe that

Opaw(a)u = ãwu

=
1

2π~

∫
R2n

ei/~〈x−y,ξ〉ã

(
x+ y

2
, ξ

)
u(y)dydξ

=
1

(2π~)n

∫
R2n

ei/~〈x−y,ξ〉
∫
R2n

a(r, s)e−(|(x+y)/2−r|
2+|ξ−s|2)drdsu(y)dydξ

and hence we have

〈Opaw(a)u, u〉 = C

∫
R2n

ei/~〈x−y,ξ〉
∫
R2n

a(r, s)

e−(|(x+y)/2−r|
2+|ξ−s|2)drdsu(y)dydξu(x)dx

Now notice that we have an integral function and its complex conjugate in
the expression above (splitting the ei/~〈x−y,ξ〉 factor) and we can write this
integral in the form∫

Rn

∫
Rn
a(r, s)|UU(r, s)|e|ξ−s|2dξdrds =

∫
Rn

∫
Rn
a(r, s)|U(r, s)|2e|ξ−s|2dξdrds

where U is a function of the form U =
∫
e−i/~〈y,ξ〉u(y)dy.

Since everything in the above expression is non-negative, the claim fol-
lows.
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We are now ready to prove the theorem. We know that since the quan-
tization is asymptotically equivalent to the Weyl quantization, we write
Opaw(a) = aw(x, ~Dx)+~rw(x, ~Dx) where rw ∈ S0(1). Now since Opaw ≥ 0
we know that

〈[aw(x, ~Dx) + ~rw(x, ~Dx)]u, u〉L2 ≥ 0.

This is equivalence to writing

〈awu, u〉 ≥ −~ 〈rwu, u〉 ≥ −~C ||u||2 ,

where the last inequality follows from L2 boundedness.
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