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1. Introduction

We discuss some topics on the Yang-Mills equations. We first develop some of the geomet-
ric background needed to understand the statement of the equation; namely, the notions of a
connection, curvature, and the Hodge star operator. We then state the equation and briefly
discuss gauge transformations. As an aside, which is interesting from a physics standpoint, we
derive the Maxwell’s equations from the Yang-Mills framework. Since Yang-Mills theory is a
generalization of Hodge theory, we spend some time carefully proving the Hodge theorem. We
conclude by investigating the Yang-Mills equations over a compact four-manifold and discuss
selfdual and antiselfdual instantons.

The majority of these notes were written while following Jost’s Riemannian Geometry and

Geometric Analysis [1], with some inspiration from more physics-oriented texts such as [2].
The last section was written while following [4]. The prerequisites are graduate level courses
in smooth manifolds and partial differential equations. The Einstein summation convention is
always assumed.
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2. Connections and Curvature

In this section, we explore connections on vector bundles. Let π : E → M to be a vector
bundle of rank n over a smooth manifold M . We use the notation Γ(E) to denote the set of
smooth sections σ : M → E of the vector bundle E. In the case E = TM , we have that
σ ∈ Γ(TM) is a smooth vector field on M . A connection on a vector bundle in a generalization
of the directional derivative in R

d. The precise definition is the following:

Definition 2.1. Let M be a smooth manifold, and π : E → M a vector bundle. A connection

on E is a map

D : Γ(TM)× Γ(E) → Γ(E),

(X, σ) 7→ DXσ

such that for any τ, σ ∈ Γ(E), X, Y ∈ Γ(TM), and f ∈ C∞(M), the following four properties

hold:

(1) DX+Y σ = DXσ +DY σ,

(2) DfXσ = fDXσ,

(3) DX(σ + τ) = DXσ +DXτ,

(4) DX(fσ) = X(f)σ + fDXσ.

Rule (4) is called the Leibniz rule. We start by investigating the local properties of D. Given
any point q ∈M , by the definition of a vector bundle, there exists a neighbourhood U containing
q and a diffeomorphism Φ : π−1(U) → U×Rn that acts linearly on the fibers. (Φ is called a local

trivialization.) If {e1, . . . , en} is the standard basis of Rn, we obtain local sections εi :M → E,
εi(p) = Φ−1(p, ei) such that at each p ∈ U , {εi(p)} forms a basis of the fiber Ep. We can thus
write any section σ :M → E in the form

σ(p) = σi(p)εi(p),

where the σi are functions on U . We define the trivial connection D0 as follows:

D0
X(σ) := X(σi)εi.

It is easy to check that D0 indeed defines a connection. Now, take any given connection D.
Locally, we can define the difference
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A(X) := D0
X −DX ,

A : Γ(TM) → C∞(M,End(Rn)),

X 7→ A(X).

Hence for each smooth vector field X , we obtain A(X), which is a matrix-valued function on
M . Said in another way, given p ∈ M , (A(X))(p) acts on a vector σi(p)εi(p). We can check
that A is C∞-linear. Indeed, we have A(X)(σiεi) = σiA(X)εi, since the derivative terms in the
Leibniz rule cancel:

A(X)(σiεi) = X(σi)εi −X(σi)εi − σiDXεi = σi(D0
X −DX)εi.

Conversely, any map A : Γ(TM) → C∞(M,End(Rn)) that is C∞-linear defines a connection
DX = D0

X + A(X). Therefore, the maps A classify connections on a trivial bundle.

We thus obtain the following local decomposition for any connection D:

DX = D0
X + A(X) (1)

.
Written out explicitly, under this decomposition we have

DXσ = X(σi)εi + Aij(X)σjεi

We now define the curvature operator corresponding to a connection D.

Definition 2.2. Let D be a connection on the vector bundle E → M . Given vector fields

V,W ∈ Γ(TM), we define the curvature F (V,W ) : Γ(E) → Γ(E) in the following way:

F (V,W )σ = DVDWσ −DWDV −D[V,W ]σ.

We investigate the form in F in local coordinates. The first claim is that if we have V = V i∂i,
W =W i∂i, we can write F (V,W ) = V jW kFjk, where

Fjk := F (∂j , ∂k).
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Since partial derivatives commute, we have [∂j , ∂k] = 0, and hence

Fjk = DjDk −DkDj, (2)

where for convenience, we denote Di := D∂i.

Before launching into the computation, we note how to write the Lie bracket in coordinates:

[V,W ] = (V i∂iW
k −W i∂iV

k)∂k.

We now compute

F (V i∂i,W
k∂k)σ = DV i∂iDW k∂kσ −DW k∂kDV i∂iσ −D(V i∂iW k−W i∂iV k)∂kσ

= DV i∂iW
kDkσ −DW k∂kV

iDiσ − (V i∂iW
k)Dkσ − (W i∂iV

k)Dkσ

= V i∂iW
kDkσ + V iW kDiDkσ −W k∂kV

iDiσ −W kV iDkDiσ

− V i∂iW
kDkσ −W i∂iV

kDkσ

= V iW k(DiDkσ −DkDiσ)

= V iW kF (∂i, ∂k)σ.

This shows that F (V,W ) = V jW kFjk.

The next step is to write Fjk in terms of A. As usual, locally we write σ = σiεi. Using
the decomposition from (1), and the notation Ai = A(∂i), we compute

Fjkσ = (DjDk −DkDj)σ
iεi

= (D0
j + Aj)(D

0
k + Ak)σ

iεi − (D0
k + Ak)(D

0
j + Aj)σ

iεi

= (D0
j + Aj)(∂kσ

iεi + Akσ
iεi)− (D0

k + Ak)(∂jσ
iεi + Ajσ

iεi)

= ∂j∂kσ
iεi + ∂j(Akσ

i)εi + Aj∂kσ
iεi + AjAkσ

iεi − ∂k∂jσ
iεi − ∂k(Ajσ

i)εi − Ak∂jσ
iεi −AkAjσ

iεi

= (∂jAk)σ
iεi + Ak∂jσ

iεi + Aj∂kσ
iεi + AjAkσ

iεi − (∂kAj)σ
iεi − Aj∂kσ

iεi −Ak∂jσ
iεi − AkAjσ

iεi

= (∂jAk − ∂kAj + AjAk − AkAj)σ
iεi.

We have thus derived the following useful local expression:

Fjkσ = (∂jAk − ∂kAj + [Aj , Ak])σ
iεi. (3)



5

Written this way, it is easy to see the skew-symmetry of the curvature operator:

Fjk = ∂jAk − ∂kAj + [Aj , Ak]

= −(∂kAj − ∂jAk − [Aj , Ak])

= −(∂kAj − ∂jAk + [Ak, Aj])

= −Fkj.

There is a different way to look at the curvature operator F . The ultimate goal is to gener-
alize the definition of the connection D in a way akin to the exterior derivative d. The rest of
this section introduces new notation that will be used throughout the document. We start by
rewriting the curvature operator, and then move on to generalize the connection D.

We rewrite the curvature operator in the following way:

F = Fjk ⊗ dxj ∧ dxk. (4)

We use the so-called “Alt convention” for the wedge product; for covectors ωi ∈ Γ(TM∗) and
vector fields Vi ∈ Γ(TM), we have

ω1 ∧ · · · ∧ ωk(Vi, . . . , Vk) =
1

k!
det(ωi(Vj)).

To justify (4), we compute for vector fields V,W

F (V,W ) = Fjk ⊗ dxj ∧ dxk (V i∂i ⊗W l∂l)

=
Fjk

2
(V jW k −W jV k)

=
1

2
(V jW kFjk − V kW jFjk)

=
1

2
(V jW kFjk + V kW jFkj)

= V jW kFjk.

Now that we have tweaked the definition of the curvature F , we revisit the definition of
a connection D.

Given a vector bundle E → M of rank n, we can construct the bundle End(E). If Ep is
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the fiber over p ∈ M , we can look at the space of linear transformations on the vector space
Ep. The fibers of End(E) are given by this space of linear transformations, and allows us to the
define the vector bundle End(E) →M of rank n2.

We want to define extend our definition of a connection D to allow it to act on sections
of End(E). The motivation for the definition is to have a Leibniz rule; if T ∈ Γ(End(E)),
σ ∈ Γ(E), and V is a smooth vector field, then we should have

DV (Tσ) = (DV T )σ + T (DV σ).

With this motivation in mind, we define

(DV T )σ := DV (Tσ)− T (DV σ). (5)

Locally, if we write D in its decomposition D = D0 + A, we obtain

(DjT )σ = (D0
j + Aj)(Tσ)− T ((D0

j + Aj)σ) = (∂jT )σ + T∂jσ + AjTσ − T∂jσ − TAjσ.

After cancellation, we see that

DjT = ∂jT + [Aj , T ]. (6)

x
In particular, since Fjk ∈ Γ(End(E)), we have

DiFjk = ∂iFjk + [Ai, Fjk]. (7)

We denote by Ωp(M) the space of smooth p-forms on M . On this space, we have the notion
of the exterior derivative d : Ωp(M) → Ωp+1(M). Inspired by the exterior derivative, we would
like to generalize the connection operator D in a similar fashion.

Let us look at our current definition of D from a different angle. Originally, we defined
D as a map D : Γ(TM) × Γ(E) → Γ(E), (X, σ) 7→ DXσ. However, we can also view this as
a map D : Γ(E) → Γ(E) ⊗ Γ(T ∗M). Since T ∗M is the space of 1-forms on M , this can be
rewritten as D : Γ(E) → Γ(E)⊗Ω1(M). When viewed in this way, in local coordinates, we can
see the action of D by using the shorthand Di ⊗ dxi. For given a section σ : M → E and any
smooth vector field V written out in coordinates V k∂k, we have the action

(Diσ ⊗ dxi)(V k∂k) = V iDiσ,

which agrees with the previous definition. We now introduce some more notation. Let
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Ωp(E) := Γ(E)⊗ Ωp(M).

Locally, for σ ∈ Γ(E) and ω ∈ Ωp(M), we have σ = σiεi and ω = ω(i1,...,ip)dx
i1 ∧ · · · ∧ dxip =

ωIdx
I , where I = (i1, . . . , ip) is a multi-index. Using a property of tensors, elements of Ωp(E)

are locally of the form

σ ⊗ ω = σiεi ⊗ ωIdx
I = σiωIεi ⊗ dxI := σI ⊗ dxI ,

where σI is defined as a useful short-hand notation.

As the main motivating example for this definition, we see from (4) that F ∈ Ω2(End(E)).

On Ωp(E), we define the following wedge product; for σ ∈ Γ(E), ω1 ∈ Ω1(M), ω2 ∈ Ωp(M),
define

(σ ⊗ ω1) ∧ ω2 := σ ⊗ (ω1 ∧ ω2).

In other words, we simply let the wedge act on the p-form and leave the vector bundle section
untouched.

Using this notation, we extend the definition of the connection in the following way: for
0 ≤ p ≤ d, where d is the dimension of the manifold M , σ ∈ Γ(E), ω ∈ Ωp(M),

D : Ωp(E) → Ωp+1(E),

D(σ ⊗ ω) = Dσ ∧ ω + σ ⊗ dω.

In coordinates, if we write an element of Ωp(E) as σI ⊗ dxI , we obtain

D(σI ⊗ dxI) = (DkσI ⊗ dxk) ∧ dxI = DkσI ⊗ dxk ∧ dxI .

In short-hand, when acting on elements of the local form σI ⊗ dxI , it may be useful to intu-
itively think of the connection as being of the form D = Di ⊗ dxi∧.

For example, we compute D ◦D:



8

D ◦D = DiDj ⊗ dxi ∧ dxj

=
1

2
(DiDj ⊗ dxi ∧ dxj +DjDi ⊗ dxj ∧ dxi)

=
1

2
(DiDj −DjDi)⊗ dxi ∧ dxj

=
1

2
Fij ⊗ dxi ∧ dxj .

Hence

D ◦D =
1

2
F. (8)

Proposition 2.1. (Bianchi Identity) The curvature F of a connection D satisfies DF = 0.

Proof. Recall that locally we have F = Fij ⊗ dxi ∧ dxj . We use (7) to expand DkFij, then use
(3) to write Fij in terms of A.

DF = DkFij ⊗ dxk ∧ dxi ∧ dxj

= (∂kFij + [Ak, Fij])⊗ dxk ∧ dxi ∧ dxj

= (∂k(∂iAj − ∂jAi + [Ai, Aj]) + [Ak, ∂iAj − ∂jAi + [Ai, Aj ]])⊗ dxk ∧ dxi ∧ dxj

= (∂k[Ai, Aj] + [Ak, ∂iAj ]− [Ak, ∂jAi] + [Ak, [Ai, Aj]])⊗ dxk ∧ dxi ∧ dxj

= ((∂kAi)Aj + Ai∂kAj − (∂kAj)Ai − Aj∂kAi + Ak∂iAj

− (∂iAj)Ak + (∂jAi)Ak − Ak∂jAi + [Ak, [Ai, Aj]])⊗ dxk ∧ dxi ∧ dxj

= Ak[Ai, Aj ]⊗ dxk ∧ dxi ∧ dxj .

The rest follows from manipulating indices and the skew-symmetry of the wedge product:

DF = (Ak(AiAj − AjAi)− (AiAj −AjAi)Ak)⊗ dxk ∧ dxi ∧ dxj

= AkAiAj ⊗ dxk ∧ dxi ∧ dxj + AjAiAk ⊗ dxk ∧ dxi ∧ dxj

− (AkAjAi ⊗ dxk ∧ dxi ∧ dxj + AiAjAk ⊗ dxk ∧ dxi ∧ dxj)

= AkAiAj ⊗ dxk ∧ dxi ∧ dxj − AjAiAk ⊗ dxj ∧ dxi ∧ dxk

− (AkAjAi ⊗ dxk ∧ dxi ∧ dxj −AiAjAk ⊗ dxi ∧ dxk ∧ dxj)

= 0.

�
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3. The Hodge Star Operator

Let V be a vector space of dimension d with a positive definite inner product (·, ·). Recall
that an orthonormal basis of V is a basis {e1, . . . , en} of V such that

(ei, ej) = δij.

An orientation on V is a choice of an orthonormal basis {e1, . . . , ed} which is declared to be
positive. Any other basis {v1, . . . , vd} that is related to {e1, . . . , ed} by a change of basis matrix
with positive determinant is said to be positively oriented. If the change of basis matrix has
negative determinant, the basis {v1, . . . , vd} is said to be negatively oriented.

Recall that if {e1, . . . , ed} is a basis for V , then ei1 ∧ · · · ∧ eip, {i1 < i2 < · · · < ip} is a
basis for Λp(V ).

We define the Hodge star operator to be a linear map ∗ : Λp(V ) → Λd−p(V ). By linearity, it
suffices select a positive orthonormal basis {e1, . . . , ed} for V and to define the star operator on
a basis element of Λp(V ) of the form ei1 ∧ · · · ∧ eip . We define

∗(ei1 ∧ · · · ∧ eip) = ej1 ∧ · · · ∧ ejd−p
,

where {ej1, . . . , ejd−p
} is chosen such that {ei1 , . . . , eip, ej1, . . . , ejd−p

} is a positive orthonormal
basis for V . If another grouping {ek1 , . . . , ekd−p

} is chosen such that {ei1, . . . , eip, ek1 , . . . , ekd−p
}

is a positive orthonormal basis for V , then {ek1 , . . . , ekd−p
} differs from {ej1 , . . . , ejd−p

} by an
even number of permutations, and by skew-symmetry ej1 ∧ · · · ∧ ekd−p

= ej1 ∧ · · · ∧ ekd−p
.

We must show that the Hodge star operator does not depend on the choice of positive or-
thonormal basis {e1, . . . , ed}. Take {f1, . . . , fd} to be another positive orthonormal basis of V ,
with ei = Aijfj . Since both these bases are positively oriented, we have detA > 0, and hence
by orthonormality we must have detA = 1. Therefore,

∗(e1 ∧ · · · ∧ ep) = ∗(Af1 ∧ · · · ∧Afp) = ∗((detA) f1 ∧ · · · ∧ fp).

A useful property of the Hodge star operator is the following:

Proposition 3.1. For all α ∈ Λp(V ), the Hodge star operator satisfies

∗ ∗ α = (−1)p(d−p)α.

Proof. It suffices to show the identity for an orthonormal basis element ei1 ∧ · · · ∧ eip . Suppose
{ei1, . . . , eip, ej1 , . . . , ejd−p

} is a positive orthonormal basis for V . First, we notice that
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ei1 ∧ · · · ∧ eip ∧ ej1 ∧ · · · ∧ ejd−p
= (−1)p(d−p)ej1 ∧ · · · ∧ ejd−p

∧ ei1 ∧ · · · ∧ eip ,

since moving each ej across p elements ei changes the sign by (−1)p, and this occurs for (d− p)
elements ej . In other words, (−1)p(d−p) is the determinant of the matrix changing the basis
{ei1, . . . , eip, ej1 , . . . , ejd−p

} to {ej1, . . . , ejd−p
, ei1, . . . , eip}. We can now compute

∗ ∗ (ei1 ∧ · · · ∧ eip) = ∗(ej1 ∧ · · · ∧ ejd−p
)

= (−1)p(d−p) ei1 ∧ · · · ∧ eip.

�

We now consider the star operator on an orientable Riemannian manifold (M, g) of dimension
d. Recall that a smooth manifold is said to be orientable if there exists a covering by smooth
charts {(Uα, ϕα)} such all that the transition maps ϕα ◦ϕ

−1
β have positive Jacobian determinant

on ϕβ(Uα ∩ Uβ). Intuitively, we have a choice of orientation for each tangent space TpM that
fits together nicely with the tangent space of the other points on the manifold.

For each point p ∈ M , we have an induced inner product space T ∗
pM with inner product

gij(p) = gij(p)
−1. The orientation on TpM also induces an orientation on T ∗

pM : if { ∂
∂x1

, . . . , ∂
∂xd

}

is an orientation on TpM , then the dual basis {dx1, . . . , dxd} is the induced orientation on T ∗
pM .

Therefore, we can define the star operator ∗ : Λp(T ∗
pM) → Λd−p(T ∗

pM). This yields a base point
preserving operator on the space of p-forms:

∗ : Ωp(M) → Ωd−p(M).

Understanding the Hodge star operator is best done by illustration with an example.

Example 3.1. Take M = R4 with oriented cotangent basis {dx1, dx2, dx3, dx4} and Euclidean

inner product gij = δij. We compute

∗(dx1 ∧ dx2) = dx3 ∧ dx4

∗(dx1 ∧ dx3) = −dx2 ∧ dx4

∗(dx1 ∧ dx4) = dx2 ∧ dx3

∗(dx2 ∧ dx3) = dx1 ∧ dx4

∗(dx2 ∧ dx4) = −dx1 ∧ dx3

∗(dx3 ∧ dx4) = dx1 ∧ dx2
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The next task is to define the Hodge star operator on the curvature F ∈ Ω2(End(E)). How-
ever, instead of defining the star operator on all of Ωp(End(E)), we shall restrict ourselves to
those elements of Ωp(End(E)) whose endomorphisms on each fiber are skew-symmetric. Denote
this space by

Ωp(Ad E).

Before showing F ∈ Ω2(Ad E), we must make some more definitions. Given a vector bun-
dle π : E → M , a family of positive definite inner products on each of the fibers Ep, varying
smoothly with p ∈M , is called a bundle metric.

Definition 3.1. Let E be a vector bundle over a smooth manifoldM with bundle metric 〈·, ·〉. A
metric connectionD on E is a connection on E such that for any smooth vector field X ∈ Γ(TM)
and sections σ, µ ∈ Γ(E), we have

X〈σ, µ〉 = 〈DXσ, µ〉+ 〈σ,DXµ〉.

Proposition 3.2. Let E be a vector bundle over a smooth manifold M with bundle metric

〈·, ·〉 and metric connection D. Locally, if we write DX = D0
X + A(X), then A(Xp) is a skew-

symmetric matrix for every p ∈M and X ∈ Γ(TM).

Proof. Let q ∈ M . It can be shown that there exists an open set U containing q and local
sections {ε1, . . . , εn} such that for all p ∈ U , {ε1(p), . . . , εn(p)} is an orthonormal basis for
Ep. The proof uses Gram-Schmidt orthonormalization and is omitted. Given this set of local
sections, select two (not necessarily distinct) members εi, εj. Notice that for all vector fields X ,

D0
X(εi) = X(1)εi = 0.

Also, since 〈εi, εj〉 = δij does not vary with p ∈ U , it is a locally constant function and we
have X〈εi, εj〉 = 0. By definition of a metric connection,

0 = X〈εi, εj〉 = 〈(D0
X + A(X))εi, εj〉+ 〈εi, (D

0
X + A(X))εj〉 = 〈Aki(X)εk, εj〉+ 〈εi, Alj(X)εl〉.

Hence

Aki(X)〈εk, εj〉 = −Alj(X)〈εi, εl〉,
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and therefore Aji(X) = −Aij(X) as required.
�

Proposition 3.3. The curvature operator F of a metric connectionD is an element of Ω2(Ad E).

Proof. For fixed j, k, recall that

Fjk = ∂jAk − ∂kAj + [Aj , Ak].

From the previous proposition, we know that Aj , Ak are n × n skew-symmetric matrices
(where n is the rank of the bundle E). The space of skew-symmetric matrices (usually denoted
o(n)) is a Lie algebra, hence it is closed under linear combinations and taking the Lie bracket.
Therefore, Fjk is a skew-symmetric endomorphism on the fibers of E, hence F ∈ Ω2(Ad E).

�

Note that the relation Fij = −Fji is a completely different skew-symmetry than the one shown
above! In the previous proposition we fixed i, j and showed that each Fij ∈ Ω2(Ad E), hence
showing that F ∈ Ω2(Ad E). The skew-symmetry Fij = −Fji arises from varying i, j.

We now define the Hodge star operator on Ωp(Ad E) by letting it act solely on the p-form.
Let σ ∈ Γ(Ad E), ω ∈ Ωp(M),

∗ : Ωp(Ad E) → Ωd−p(Ad E),

∗(σ ⊗ ω) := σ ⊗ ∗ω.

At last, we have all the necessary ingredients to define the Yang-Mills equations.
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4. Statement of the Yang-Mills Equation

Definition 4.1. Let E be a vector bundle over an orientable Riemannian smooth manifold M .

A metric connection D is called a Yang-Mills connection if

∗D ∗ F = 0.

Since the Hodge star operator has an inverse, we see that this equation is equivalent to
D ∗ F = 0.

We briefly discuss gauge transformations. Denote by Aut(E) the bundle over M whose
fiber over p ∈M is the group of orthogonal linear transformations of Ep. A section g of Aut(E)
is called a gauge transformation. The group of all such gauge transformations is called the gauge
group G. We let g act on D by conjugation: if σ ∈ Γ(E), then

(g ·D)σ := g−1D(gσ).

How does A transform under this action by g? So far, we have written the local decomposi-
tion DX = D0

X +A(X). However, using the usual exterior derivative, we can write this without
having to feed the vector field X into D. From now onwards, we will sometimes simply write
D = d+ A. Using this expression, we see

g · (d+ A)σ = g−1(d+ A)(gσ)

= g−1d(gσ) + g−1A(gσ)

= g−1(dg)σ + g−1gdσ + g−1A(gσ)

= (d+ g−1dg + g−1Ag)σ.

Therefore, we have

g · A = g−1dg + g−1Ag (9)

We let g act on Ωp(End(E)) in the following way

g · (FI ⊗ dxI) := (g−1FIg)⊗ dxI .
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We will show that if D is a Yang-Mills connection on E, then the connection D̃ = g · D is
also a Yang-Mills connection. First, we compute the curvature F̃ of D̃. By (2), we have locally

F̃jk = D̃jD̃k − D̃kD̃j

= g−1Djgg
−1Dkg − g−1Dkgg

−1Djg

= g−1(DjDk −DkDj)g

= g−1Fjkg.

Therefore, the curvature ofD transforms as F̃ = g−1Fg. Computing the Yang-Mills equations
in coordinates using (5), for any σ ∈ Γ(E), we obtain

(∗D̃ ∗ F̃ )σ = (D̃iF̃jk)σ ⊗ ∗(dxi ∧ ∗(dxj ∧ dxk))

= (D̃i(F̃jkσ)− F̃jk(D̃iσ))⊗ ∗(dxi ∧ ∗(dxj ∧ dxk))

= (g−1Di(Fjk(gσ))− g−1Fjk(Di(gσ)))⊗ ∗(dxi ∧ ∗(dxj ∧ dxk))

= g−1((DiFjk)(gσ))⊗ ∗(dxi ∧ ∗(dxj ∧ dxk))

= g · (∗D ∗ F )σ.

It follows that if D is a Yang-Mills connection on E, then g ·D is also a Yang-Mills connection.
Thus the space of Yang-Mill connections on a vector bundle E of rank n > 1 is either empty or
infinite. To fix this problem, we can seek solutions of the Yang-Mills equations modulo gauge
transformations by a gauge group G.
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5. Short Excursion into Hyperbolic Yang-Mills: The Maxwell Equations

So far, we have only considered Riemannian manifolds. For many applications to physics, we
need a slight generalization and allow so-called pseudo-Riemannian manifolds. The difference
is that we now only require the inner product on the tangent space to be nondegenerate; the
positive-definitive condition is dropped. Only in this section will we consider pseudo-Riemannian
manifolds; for all other sections we will return to working with a Riemannian manifold. The
goal of this section is simply to do some computations with the Yang-Mills equations and see
how the Maxwell’s equations can be derived from them, and it is not logically required for the
subsequent sections.

An important example of an nondegenerate inner product that is not positive-definite is
the following:

Example 5.1. (Lorentz Inner Product) Let V be a four dimensional vector space. If x =
(x0, x1, x2, x3) and y = (y0, y1, y2, y3), we define

(x, y) = −x0y0 + x1y1 + x2y2 + x3y3.

The definition of orthonormality is tweaked in the following way: an orthonormal basis of V
is a basis {e1, . . . , en} of V such that

(ei, ej) = ±δij .

The definition of the Hodge star operator is also altered slightly. Select a positive orthonormal
basis {e1, . . . , ed} for V and to define the star operator on a basis element as follows:

∗(ei1 ∧ · · · ∧ eip) = (ei1 , ei1) . . . (eip , eip) ej1 ∧ · · · ∧ ejd−p
,

where {ej1, . . . , ejd−p
} is chosen such that {ei1 , . . . , eip, ej1, . . . , ejd−p

} is a positive orthonormal
basis for V . Following the same argument as before, it can be shown that the Hodge operator
is well-defined.

Example 5.2. Take M = R4 with oriented cotangent basis {dx0, dx1, dx2, dx3} and Lorentz

inner product gij = diag(−1, 1, 1, 1). We compute

∗(dx0 ∧ dx1) = −dx2 ∧ dx3

∗(dx0 ∧ dx2) = dx1 ∧ dx3
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∗(dx0 ∧ dx3) = −dx1 ∧ dx2

∗(dx1 ∧ dx2) = dx0 ∧ dx3

∗(dx1 ∧ dx3) = −dx0 ∧ dx2

∗(dx2 ∧ dx3) = dx0 ∧ dx1

With these generalizations, we can look at the Yang-Mills equations over a pseudo-Riemannian
manifold. Let us compute the Yang-Mills equations explicitly for the case M = R4 with the
Lorentz metric gij = diag(−1, 1, 1, 1). We take the positive orientation for the cotangent bundle
to be {dx0, dx1, dx2, dx3}. The Yang-Mills equation reads

DiFjk ⊗ dxi ∧ ∗(dxj ∧ dxk) = 0.

Since we must equate the coefficient of each of the wedges dxα ∧ dxβ ∧ dxγ to zero, we have
(

4
3

)

= 4 distinct equations. The first thing to notice is that if i, j, k are all distinct, then the
right-hand side is trivially zero because of a repeated index in the wedge product. We compute
explicitly the coefficient in front of dx1 ∧ dx2 ∧ dx3, which turns out to be

2(D1F10 +D2F20 +D3F30).

The factor of 2 comes from the skew-symmetry Fij = −Fji and the skew-symmetry of the
wedge product. Substituting the expression (7) for DiFjk and equating the whole thing to zero
yields the first equation

∂1F10 + [A1, F10] + ∂2F20 + [A2, F20] + ∂3F30 + [A3, F30] = 0.

We now compute the coefficient in front of the dx0 ∧ dxa ∧ dxb term, where a, b ∈ {1, 2, 3}
and a < b. Let c ∈ {1, 2, 3}\{a, b}. Then the coefficient in front of the dx0 ∧ dxa ∧ dxb is

2(−D0F0c +DaFac +DbFbc).

Thus we have three equations, one for each c ∈ {1, 2, 3}:

−∂0F0c − [A0, F0c] +
3
∑

i=1

∂iFic + [Ai, Fic] = 0.

Adding the first equation, the Yang-Mills equations for d = 4 with Lorentz metric become
the following set of four equations:

− ∂0F0β − [A0, F0β] +

3
∑

i=1

∂iFiβ + [Ai, Fiβ] = 0, (10)
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where β ∈ {0, 1, 2, 3}.

Using this formulation, we can derive Maxwell’s equations for 3 dimensional space in vacuum
from the Yang-Mills equations. The Maxwell’s equations for 3 dimensional space in vacuum
are:

∂tE = ∇× B, ∂tB = −∇×E,

and
∇ · E = 0, ∇ · B = 0,

where E,B : R3 × R → R
3.

Consider the Yang-Mills equation in d = 4 Minkowski space over a rank n = 2 vector bundle.
As discussed in the chapter on Hodge theory, since skew-symmetric 2 × 2 matrices commute,
the space Ad(E) reduces to the trivial bundle and the endomorphisms Ai, Fjk are real (we can
generalize this to complex) numbers. Since all commutators involving A vanish, the Yang-Mills
equations (10) then read

− ∂0F0β +

3
∑

i=1

∂iFiβ = 0, (11)

for β ∈ {0, 1, 2, 3}. Since F is a curvature operator, it must satisfy the Bianchi identiy:

DF = ∂kFij ⊗ dxk ∧ dxi ∧ dxj = 0.

Therefore, after setting the coefficient of each dxα ∧ dxβ ∧ dxγ terms to zero, we see that F
must also satisfy

∂αFβγ + ∂γFαβ + ∂βFγα = 0, (12)

for any α, β, γ ∈ {0, 1, 2, 3}.

The last step is to write the matrix with entries Fij in the following way

Fij =









0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0








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We identify ∂0 = ∂t, ∂1 = ∂x, ∂2 = ∂y, ∂3 = ∂z, and read off (11) for β = 0:

∂xEx + ∂yEy + ∂zEz = 0.

The cases β = 1, 2, 3 yield respectively

∂tEx = ∂yBz − ∂zBy,

∂tEy = ∂zBx − ∂xBz,

∂tEz = ∂xBy − ∂yBx.

Hence we have recovered two of the Maxwell equations: ∇ · E = 0 and ∂tE = ∇×B.

We now read off (12) for (α, β, γ) = (123):

∂xBx + ∂yBy + ∂zBz = 0.

For the cases (α, β, γ) = (012), (013), (023) we obtain respectively

∂tBz = ∂yEx − ∂xEy,

∂tBy = ∂xEz − ∂zEx,

∂tBx = ∂zEy − ∂yEz.

We have thus obtained the last two Maxwell equations: ∇ · B = 0 and ∂tB = −∇× E.
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6. Hodge Theory

We shall see that for two dimensional vector bundles, Yang-Mills theory reduces to Hodge
theory. The goal of this section is to prove Hodge’s theorem. The proofs in this section follow [1].

Throughout this section, we letM be a compact, oriented, Riemannian manifold of dimension
d. Using the Hodge star operator ∗ : Ωp(M) → Ωd−p(M), we define an L2 inner product on the
space Ωp(M) :

(α, β) =

∫

M

α ∧ ∗β,

for any α, β ∈ Ωp(M). As usual, the norm is given by ||α||2L2 = (α, α).

Recall the exterior derivative d : Ωp(M) → Ωp+1(M). We define d∗ as the adjoint of d
with respect to the inner product (., .).

d∗ : Ωp+1(M) → Ωp(M),

(dα, β) = (α, d∗β),

for any α ∈ Ωp(M), β ∈ Ωp+1(M).

We use the definitions of d, d∗ to introduce the notion of a harmonic p-form.

Definition 6.1. The Laplace-Beltrami operator ∆ : Ωp(M) → Ωp(M) is defined as

∆α = dd∗α + d∗dα.

We say that an element α ∈ Ωp(M) is harmonic if ∆α = 0. It is immediate from the definition
that the Laplace-Beltrami operator is self-adjoint:

(∆α, β) = (α,∆β),

for any α, β ∈ Ωp(M).

An equivalent definition of harmonicity of a p-form α is that dα = 0 and d∗α = 0. Indeed,
first suppose ∆α = 0. Then

0 = (∆α, α) = (dd∗α, α) + (d∗dα, α) = (d∗α, d∗α) + (dα, dα).

Since ||d∗α||2L2 + ||dα||2L2 = 0, we must have dα = 0 and d∗α = 0. On the other hand, if
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dα = 0 and d∗α = 0, then dd∗α+ d∗dα = 0.

For computations involving d∗, it is usually easier way to think of the operator in the following
way.

Proposition 6.1. The operator d∗ : Ωp(M) → Ωp−1(M) satisfies, for any β ∈ Ωp(M),

d∗β = (−1)d(p−1)+1 ∗ d ∗ β.

Proof. Let α ∈ Ωp−1(M). Since β ∈ Ωp(M), we have d ∗ β ∈ Ωd−p+1(M). By Proposition (3.1),
∗ ∗ d ∗ β = (−1)(d−p+1)(p−1)d ∗ β. We compute using the Leibniz rule for exterior derivatives:

d(α ∧ ∗β) = dα ∧ ∗β + (−1)p−1α ∧ d ∗ β = dα ∧ ∗β + (−1)(p−1) (−1)(d−p+1)(p−1)α ∧ (∗∗)d ∗ β.

Since even powers of (−1) are the identity, we compute

(−1)(p−1)+(d−p+1)(p−1) = (−1)2p−2+p(p−1)+d(p−1) = (−1)d(p−1).

Therefore, after integrating we obtain
∫

M

d(α ∧ ∗β) =

∫

M

dα ∧ ∗β − (−1)d(p−1)+1α ∧ ∗(∗d ∗ β).

By Stokes’ theorem, the left hand side is zero, and hence by definition of the L2 inner product
on forms we obtain

(dα, β) = (α, (−1)d(p−1)+1 ∗ d ∗ β).

�

We now recall the definition of DeRham cohomology. For any p-form α, if dα = 0, we say α
is closed. If there exists a p− 1 form η such that α = dη, we say that α is exact. Since ddη = 0
for any p − 1 form η, exact forms are closed. It therefore makes sense to define the quotient
vector space

Hp
dR(M) :=

{Closed p forms}

{Exact p forms}
.

In other words, we identify two elements α1, α2 ∈ Ωp(M) to be the same element of Hp
dR(M)

(we also say they are cohomologous) if α1 −α2 = dη for some η ∈ Ωp−1(M). This partitions the
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vector space of closed p-forms into cohomology classes.

Hodge theory looks at harmonic forms in Hp
dR(M). The main theorem of this section states

that every cohomology class has a unique harmonic representative. To prove this theorem, we
use Sobolev spaces and standard elliptic theory. We state the results from standard elliptic
theory that will be used before proceeding to prove the theorem.

First we recall the definition of Sobolev space. For u ∈ L1
loc(U), we say that ∂αu = v is

the αth weak derivative of u if for all ϕ ∈ C∞
c (U) we have

∫

U

u∂αϕ = (−1)|α|
∫

U

vϕ.

We can define Sobolev spaces using this notion of weak derivatives. Let k ∈ N, and define

Hk,2(Ω) = {f ∈ L2(Ω) :

∫

Ω

|∂αf |2 <∞, for all |α| ≤ k}

||f ||Hk,2(Ω) =





∑

|α|≤k

∫

Ω

|∂αf |2





1/2

.

The space Hk,2 is a Banach space. We denote the Banach space Hk,2
0 (Ω) as the closure of

C∞
c (Ω) with respect to the Sobolev norm given above.

Theorem 6.1. Sobolev Lemma Let Ω ⊂ Rn be a bounded domain. Let k, s be positive integers
such that s > n/2 + k. Then Hs,2

0 (Ω) is continuously embedded into Ck(Ω).

Theorem 6.2. Rellich-Kondrachov Theorem Let Ω be a bounded domain. Then H1,2
0 (Ω)

is compactly embedded into L2(Ω).

Theorem 6.3. Elliptic Regularity Let u ∈ H1,2(Ω) be a weak solution of the equation ∆u = f :
∫

Ω

u∆ϕ =

∫

Ω

fϕ,

for all ϕ ∈ H1,2
0 (Ω). If f ∈ Hs,2(Ω), then u ∈ Hs+2,2(Ω̃) for every Ω̃ whose closure is a compact

subset of Ω.
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We adapt the definition of the Sobolev spaces such that the theory can be applied to Ωp(M).
We define the norm

||α||2H1,2(M) := (dα, dα) + (d∗α, d∗α) + (α, α).

We call H1,2
p (M) the completion of the space Ωp(M) with respect to the norm || · ||2H1,2(M). It

turns out that, locally, this norm is equivalent to the Euclidean Sobolev norm defined above.
The proof uses results from Riemannian geometry involving the existence of normal coordinates,
and will be omitted. The important conclusion is that we can apply all theorems developed for
Sobolev spaces in a Euclidean setting to our compact, oriented Riemannian manifold.

Lemma 6.1. Let β ∈ Ωp(M) be a closed form that is orthogonal to the kernel of d∗. Then there

exists a constant C > 0 such that

(β, β) ≤ C(d∗β, d∗β).

Proof. Proceed by contradiction. Suppose there exists a sequence {βn} of closed forms βn ∈
Ωp(M) such that each βn is orthogonal to the kernel of d∗, and

(βn, βn) ≥ n(d∗βn, d
∗βn).

We define the following scaling factor

λn :=
1

(βn, βn)1/2
.

We then have

1 = (λnβn, λnβn)

= λ2n(βn, βn)

≥ λ2nn(d
∗βn, d

∗βn)

= n(d∗λnβn, d
∗λnβn).

Using the above bound and the fact that βn are closed, we can bound the sequence {λnβn}
in the Sobolev norm:

||λnβn||
2
H1,2(M) = (dλnβn, dλnβn) + (d∗λnβn, d

∗λnβn) + (λnβn, λnβn) ≤
1

n
+ 1.

Since M is a compact manifold, we can use the Rellich-Kondrachov theorem on the bounded
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sequence {λnβn} ⊂ H1,2(M). We then use sequential compactness to extract a subsequence
{λnk

βnk
} that converges in the L2 norm to a p-form ψ ∈ H1,2(M). For convenience, we replace

the original sequence with this new subsequence; i.e. assume that {λnβn} converges to ψ in the
L2 norm.

Since (d∗λnβn, d
∗λnβn) ≤ 1/n, we see that d∗λnβn → 0 in L2. Then for arbitrary ϕ ∈ Ωp(M),

we have

(d∗ψ, ϕ) = (ψ, dϕ)

= lim(λnβn, dϕ)

= lim(d∗λnβn, ϕ) = 0.

Since this holds for all ϕ ∈ Ωp(M), we have that d∗ψ = 0. But then since the βn are orthogonal
to the kernel of d∗, we know that (λnβn, ψ) = 0. This leads to the following contradiction: on
one hand, ||ψ||L2 = 1 since ψ is the L2 limit of the sequence {λnβn} where ||λnβn||L2 = 1 for all
positive integers n. On the other hand,

||ψ||L2 = (limλnβn, ψ) = lim(λnβn, ψ) = 0.

�

The lemma will be used to prove the Hodge theorem, which is the main theorem of this section.

Theorem 6.4. Hodge Theorem Let M be a compact Riemannian manifold of dimension d.
Let 0 ≤ p ≤ d. In each de Rham cohomology class of Hp

dR(M), there exists a unique harmonic

representative.

Proof. We start by showing uniqueness. If p = 0 is this is trivial. If p > 0, suppose there exists
two elements ω1, ω2 ∈ Ωp(M), both harmonic, such that ω1 − ω2 = dη for some η ∈ Ωp−1(M).
Then since d∗ω1 = d∗ω2 = 0 by harmonicity, we have

||ω1 − ω2||
2
L2 = (ω1 − ω2, dη) = (d∗(ω1 − ω2), η) = 0.

Therefore ω1 = ω2.

The proof of existence is more involved. Fix a closed form ω0 ∈ Ωp(M). We want to find a
harmonic element ω ∈ Ωp(M) such that ω − ω0 = dη for some η ∈ Ωp−1(M). The strategy is to
minimize the functional || · ||L2 over a certain family of p-forms in order to obtain the candidate
cohomologous harmonic form. Let (L2)p(M) denote the space of sections of Λp(M) such that
||α||L2 <∞. Define
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F = {ω ∈ (L2)p(M) : there exists α ∈ (L2)p−1(M) such that for all ϕ ∈ Ωp(M), (ω−ω0, ϕ) = (α, d∗ϕ)}.

We denote the infimum of the L2 norm over this family by b:

b = inf
ω∈F

||ω||2L2.

Take a minimizing sequence {ωn} ⊂ F such that ||ωn||
2
L2 → b. Without loss of generality, we

can assume that ||ωn||
2
L2 ≤ 2b. By the Banach-Alaoglu theorem, every norm bounded sequence

in L2 has a weakly convergent subsequence. In other words, there exists a subsequence {ωnk
}

and ω ∈ (L2)p(M) such that for all ϕ ∈ Ωp(M),

(ωnk
, ϕ) → (ω, ϕ).

After relabelling and removing terms from the original sequence, we may assume that {ωn}
converges weakly to ω. The goal is now to show that ω is harmonic. We will show that ω is
weakly harmonic, and then use standard elliptic theory to complete the proof. The first step is
to show that ω ∈ F .

Define η = ω − ω0. Then for all ϕ ∈ Ωp(M) such that d∗ϕ = 0, we have (η, ϕ) = 0:

(η, ϕ) = lim(ωn − ω0, ϕ) = lim(αn, d
∗ϕ) = 0.

Using this fact, we construct a linear functional f on the space d∗(Ωp(M)). We define f as

f(d∗ϕ) = (η, ϕ),

for all ϕ ∈ Ωp(M). We must check that f is well-defined. Indeed, if d∗ϕ1 = d∗ϕ2, then

f(d∗ϕ1)− f(d∗ϕ2) = (η, ϕ1)− (η, ϕ2) = (η, ϕ1 − ϕ2) = 0.

We show that f is bounded. Define π to be the orthogonal projection onto the kernel of d∗.
Then

f(d∗ϕ) = f(d∗(ϕ− π(ϕ))) = (η, ϕ− π(ϕ)).

By Lemma 6.1, since ϕ− π(ϕ) is in the orthogonal complement of the kernel of d∗, we have

||ϕ− π(ϕ)||L2 ≤ C ||d∗(ϕ− π(ϕ))||L2 = C||d∗(ϕ)||L2.
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Using this estimate and the Cauchy-Schwarz-Bunyakovsky inequality, we can show that f is
a bounded linear functional:

|f(d∗ϕ)| = |(η, ϕ− π(ϕ))| ≤ ||η||L2 ||ϕ− π(ϕ)||L2 ≤ C||η||L2 ||d∗ϕ||L2.

By density, we can extend f to the L2 closure of d∗(Ωp(M)). This allows us to use the
Riesz representation theorem to obtain an α ∈ (L2)p(M) such that f(d∗ϕ) = (α, d∗ϕ). By the
definition of f , we have shown that for all ϕ ∈ Ωp(M),

(η, ϕ) = (α, d∗ϕ).

It follows that ω ∈ F . Also, for any ϕ ∈ Ωp+1(M),

(ω, d∗ϕ) = (ω0, d
∗ϕ) + (η, d∗ϕ) = (dω0, ϕ) + (α, d∗d∗ϕ) = 0.

(If for any ϕ ∈ Ωp+1(M), we have (ω, d∗ϕ) = 0, we say that dω = 0 weakly.)

Since ω ∈ F , we know that b ≤ ||ω||2L2. On the other hand, by weak lower semicontinu-
ity of the Lp norm, if gi converges to g weakly in Lp, then ||g||p ≤ lim inf ||gi||p. It follows
that

||ω||2L2 ≤ lim inf ||ωn||
2
L2 = b.

Hence ||ω||2L2 = b and ω is the minimizer of the functional || · ||2L2 in F .

We now show that ω is weakly harmonic. It was already shown that that dω = 0 weakly, so
it only remains to show that d∗ω = 0 weakly. (If for any ϕ ∈ Ωp−1(M), we have (ω, dϕ) = 0, we
say that d∗ω = 0 weakly.) By calculus of variation, since ω is the minimizer of the functional
|| · ||2L2 in F , we must have

d

dε

∣

∣

∣

∣

ε=0

||ω + εdϕ||2L2 = 0

for all ϕ ∈ Ωp−1(M). (Indeed, ω + εdϕ ∈ F since (ω − ω0 + εdϕ, ψ) = (α + εϕ, d∗ψ) for all
ψ ∈ Ωp(M).) Passing the derivative under the integral is not a problem since the derivative with
respect to ε of the integrand is absolutely integrable. (One can use the dominated convergence
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theorem.) We thus compute

0 =
d

dε

∣

∣

∣

∣

ε=0

∫

M

(ω + εdϕ) ∧ ∗(ω + εdϕ)

=
d

dε

∣

∣

∣

∣

ε=0

∫

M

ω ∧ ∗ω + ω ∧ ∗εdϕ+ εdϕ ∧ ∗ω + ε2dϕ ∧ ∗dϕ

=

∫

M

ω ∧ ∗dϕ+ dϕ ∧ ∗ω

= 2(ω, dϕ).

Therefore, d∗ω = 0 weakly. It follows that ω is weakly harmonic:

(ω,∆ϕ) = 0,

for all ϕ ∈ Ωp(M). A bootstrap argument finishes the proof. By elliptic regularity, ω ∈ Hk,2(M)
for all positive integers k. By the Sobolev lemma, ω ∈ Ck for all k, hence ω ∈ Ωp(M).

�

Now that we have established some Hodge theory, we return to the Yang-Mills equations and
show that it reduces to Hodge theory in the case of a vector bundle E → M of rank n = 2.

Recall that Ad(E) is the vector bundle over M whose fiber at p ∈ M is the set of skew-
symmetric endomorphisms of the fiber Ep. For the case n = 2, a skew symmetric endomorphism
is of the form

(

0 x
−x 0

)

where x ∈ R. Furthermore, these matrices commute:

(

0 x
−x 0

)(

0 y
−y 0

)

=

(

0 −xy
−xy 0

)

=

(

0 y
−y 0

)(

0 x
−x 0

)

.

In this case, a skew-symmetric endomorphisms of the fiber Ep is determined by selecting a
single real number, and furthermore, all Lie brackets vanish. We can thus view Ad(E) as the
trivial bundle M × R.

Locally, the curvature is of the form F = Fjk ⊗ dxj ∧ dxk where Fjk is now a real num-
ber. Since all commutators vanish, we have DiFjk = ∂iFjk (7). Hence the Bianchi identity (2.1)
becomes

dF = 0,
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where d is the usual exterior derivative. Therefore, the curvature F is a closed 2-form. The
Yang-Mills equations becomes ∗D ∗ F = ∗d ∗ F = 0, which by Proposition 6.1 means that

d∗F = 0. (13)

Hence a connection D satisfies the Yang-Mills equations if and only if it is harmonic. Thus,
in the case n = 2, Yang-Mills theory reduces to Hodge theory.
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7. Variational Formulation

The Yang-Mills equations arise from minimizing a functional called the Yang-Mills functional.
In this section we will define the Yang-Mills functional, and recover the Yang-Mills equations
from it. Recall that M is always assumed to be an oriented, compact Riemannian manifold of
dimension d. The first task is to define an L2 product on Ωp(AdE).

Let A1, A2 ∈ o(n). We define

A1 · A2 := −tr(A1A2). (14)

This defines a positive definite inner product on the space of skew-symmetric n× n matrices
o(n).

For p-forms ω1, ω2 ∈ ΛpT ∗
xM , we define the following inner product:

〈ω1, ω2〉 := ∗(ω1 ∧ ∗ω2).

Putting these two together, for µ1, µ2 ∈ AdEx, ω1, ω2 ∈ ΛpT ∗
xM , we obtain

〈µ1 ⊗ ω1, µ2 ⊗ ω2〉 := µ1 · µ2 〈ω1, ω2〉. (15)

Extending this linearly, we obtain an inner product on Ωp(AdE). For µ ∈ Ωp(AdE), we will
denote

|µ|2 := 〈µ, µ〉.

We now define an L2 inner product on Ωp(AdE), and denote it by round brackets:

(µ1 ⊗ ω1, µ2 ⊗ ω2) :=

∫

M

〈µ1 ⊗ ω1, µ2 ⊗ ω2〉 ∗ (1).

Here, we use ∗(1) to denote the volume form of M . A computation using the definition of
the Hodge star operator (which we omit) shows that

∗(1) =
√

det gijdx
1 ∧ · · · ∧ dxd.

For ν ∈ Ωp(AdE), we will denote

||ν||2L2 = (ν, ν).
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We can thus define the operator adjoint to D with respect to this L2 inner product:

D∗ : Ωp(AdE) → Ωp−1(AdE),

(D∗ν, µ) = (ν,Dµ),

for all µ ∈ Ωp−1(AdE), ν ∈ Ωp(AdE).

From Proposition (6.1), we know that the adjoint d∗ : Ωp(M) → Ωp−1(M) can be writ-
ten of the form d∗ = (−1)d(p−1)+1 ∗ d∗. Using this fact, it can be shown that

D∗ = (−1)d(p−1)+1 ∗D ∗ . (16)

Definition 7.1. Let M be a compact, oriented, Riemannian manifold. Let E be a vector bundle

over M , with bundle metric. Let D be a metric connection on E, and let FD ∈ Ω2(AdE) be its

curvature. We define the Yang-Mills functional as the following:

YM(D) := ||FD||
2
L2 =

∫

M

|FD|
2 ∗ (1) =

∫

M

〈FD, FD〉 ∗ (1).

Suppose D is a critical point of the Yang-Mills functional. We consider variations of the form
D + εB, where B ∈ Ω1(AdE). The curvature can be found using (8). If σ ∈ Γ(E), then using
(5), we obtain

1

2
FD+εBσ = (D + εB)(D + εB)σ

= D ◦Dσ + εDi(Bjσ)⊗ dxi ∧ dxj + εBjDiσ ⊗ dxj ∧ dxi + ε2BiBjσ ⊗ dxi ∧ dxj

= D ◦Dσ + ε(DiBj)σ ⊗ dxi ∧ dxj + εBjDiσ ⊗ dxi ∧ dxj + εBjDiσ ⊗ dxj ∧ dxi

+ ε2BiBjσ ⊗ dxi ∧ dxj

= (D ◦D + ε(DB) + ε2B ∧ B)σ

Therefore, the Euler-Lagrange equations yield

0 =
d

dε

∣

∣

∣

∣

ε=0

YM(D + εB) =
d

dε

∣

∣

∣

∣

ε=0

∫

M

〈FD+εB, FD+εB〉 ∗ (1)

By substituting the above expression and dividing out a constant, we obtain
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0 =
d

dε

∣

∣

∣

∣

ε=0

∫

M

〈D ◦D,D ◦D〉+ ε(〈D ◦D,DB〉+ 〈DB,D ◦D〉) +O(ε2).

By symmetry of the inner product 〈·, ·〉, we have

0 = 2(DB,D ◦D).

Hence by (8), we obtain the condition

0 = (DB,FD) = (B,D∗FD).

Since this holds for all B ∈ Ω1(AdE), we must have

D∗FD = 0.

By (16), this condition is equivalent to requiring D to be a Yang-Mills connection. Therefore,
critical points of the Yang-Mills functional obey the Yang-Mills equations.



31

8. Manifolds of Dimension d = 4

Throughout this entire section, we always assume that M is an orientable, compact Rie-
mannian manifold of dimension d = 4. The Hodge star operator acts in a nice way on the 6
dimensional vector space Λ2(T ∗

pM) as we shall now see. Suppose gij(p) = δij . It can be proved
using techniques from Riemannian geometry that this can be assumed without loss of generality;
coordinates with this feature are called normal coordinates centered at p. Define the following
basis for Λ2(T ∗

pM):

e1 = dx1 ∧ dx2, e2 = dx1 ∧ dx3, e3 = dx1 ∧ dx4,

e4 = dx2 ∧ dx3, e5 = dx2 ∧ dx4, e6 = dx3 ∧ dx4.

As computed in Exercise (3.1), we have

∗e1 = e6, ∗e2 = −e5, ∗e3 = e4,

∗e4 = e3, ∗e5 = −e2, ∗e6 = e1.

With respect to this basis, the Hodge ∗ operator has the following matrix form:

∗ =















0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0















.

The operator ∗ thus has two eigenvalues: 1 and −1. We have the decomposition Λ2(T ∗
pM) =

Λ+ ⊕Λ−, where Λ+ is the space spanned by the eigenvectors with eigenvalue 1, while Λ− is the
space spanned by the eigenvectors with eigenvalue −1. The eigenvectors associated with the
eigenvalue 1 are

e1 + e6, e2 − e5, e3 + e4.

The eigenvectors associated with the eigenvalue −1 are

e1 − e6, e2 + e5, e3 − e4.

Elements of Λ+ are called selfdual, while elements of Λ− are called antiselfdual. Explicitly, a
basis for Λ+ is given by
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f+
1 = dx1 ∧ dx2 + dx3 ∧ dx4, f+

2 = dx1 ∧ dx3 − dx2 ∧ dx4, f+
3 = dx1 ∧ dx4 + dx2 ∧ dx3.

A basis for Λ− is given by

f−
1 = dx1 ∧ dx2 − dx3 ∧ dx4, f−

2 = dx1 ∧ dx3 + dx2 ∧ dx4, f−
3 = dx1 ∧ dx4 − dx2 ∧ dx3.

A computation left to the reader shows that

f+
i ∧ f−

j = 0. (17)

We can naturally generalize the notion of selfdual and antiselfdual to elements of Ω2(AdE).
This allows us to decompose an arbitrary µ ∈ Ω2(AdE) as µ = µ+ + µ−, where ∗µ+ = µ+ and
∗µ− = −µ−. The important fact about this decomposition is that it is orthogonal with respect
to the inner product 〈·, ·〉 defined in (15). Indeed, we can write

µ+ = µ+
1 ⊗ f+

1 + µ+
2 ⊗ f+

2 + µ+
3 ⊗ f+

3 ,

µ− = µ−
1 ⊗ f−

1 + µ−
2 ⊗ f−

2 + µ−
3 ⊗ f−

3 .

To show orthogonality, we notice

〈µ+
i ⊗ f+

i , µ
−
j ⊗ f−

j 〉 = µ+
i · µ−

j ∗ (f+
i ∧ ∗f−

j ) = 0,

since f+
i ∧ ∗f−

j = −f+
i ∧ f−

j = 0 by (17). This orthogonal decomposition into selfdual and anti-
selfdual components will be an important ingredient when minimizing the Yang-Mills functional
over a 4 dimensional manifold.

A metric connection D is called selfdual instanton if its curvature F = Fjk ⊗ dxj ∧ dxk

is a selfdual 2-form. An antiselfdual instanton is defined similarly. The importance of selfdual
and antiselfdual instantons comes from the following theorem:

Theorem 8.1. If a metric connection D is selfdual or antiselfdual, then D is a Yang-Mills

connection.

Proof. Suppose ∗F = ±F . Then the Bianchi identity yields

D ∗ F = ±DF = 0.
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Hence D is a Yang-Mills connection.
�

The next objective will be to show that the converse also holds; that is, if D minimizes the
Yang-Mills functional, then D is a selfdual or antiselfdual instanton. This will thus reduce the
problem of solving the Yang-Mills equations to finding selfdual and antiselfdual instantons.

Before proceeding, we introduce the concept of Chern classes. Let E be a complex vector
bundle of rank n over M . We recall the elementary symmetric polynomials P j, which satisfy

n
∏

k=1

(1 + xkτ) =
n
∑

j=0

P j(x1, . . . , xn)τ
j .

We define

P j : Mat(n× n,C) → C,

such that P j(B) is the elementary symmetric polynomial homogeneous of degree j of the eigen-
values of B. For example, if λi are the eigenvalues of the matrix B, we have

P 1(B) = λ1 + · · ·+ λn,

P 2(B) = λ1λ2 + · · ·+ λn−1λn.

We notice that for any A ∈ Gl(n,C), we have that P j(A−1BA) = P j(B). This follows
from the fact that the eigenvalues are invariant under change of basis, and hence A−1BA only
permutes the eigenvalues of A. The claim follows since elementary symmetric polynomials are
invariant under permutation of the variables. We say that P j is invariant.

Let FD ∈ Ωp(AdE) be the curvature of a connection D. Let P j(FD) ∈ Ω2j(M) be the
differential form of degree 2j defined by

P j(FD) := P j((FD)ij ⊗ dxi ∧ dxj).

Since P j is invariant, this expression is well-defined since any other trivialization of FD is
related by a change of basis of the form ϕ−1FDϕ. The following seemingly magical theorem will
allow us to define Chern classes as invariants of the vector bundle E →M . We state it without
proof, and refer to the interested reader to [1].
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Theorem 8.2. P j(FD) ∈ Ω2j(M) is a closed 2j-form: dP j(FD) = 0. This allows us to define

the cohomology class [P j(FD)] ∈ H2j(M). Futhermore, [P j(FD)] does not depend on the choice

of connection D.

Definition 8.1. The Chern classes of E are the following:

cj(E) =

[

P j(
i

2π
F )

]

∈ H2j(M).

It will be useful to compute the first two Chern classes c1, c2 for our 4 dimensional, com-
pact, orientable manifold M . Denote the eigenvalues of iF/2π ∈ Ω2(AdE) by the 2-forms
λα ∈ Ω2(M).

n
∑

j=0

cj(E)τ
j = det

(

i

2π
τF + I

)

=
n
∏

α=1

(1 + λατ)

= 1 + (λ1 + . . . λn)τ + (λ1λ2 + · · ·+ λn−1λn)τ
2

+ · · ·+ (λ1 · · ·λn)τ
n.

Since F is skew-symmetric, its trace is zero. Hence

c1(E) =
n
∑

i=1

λi = Tr
iF

2π
= 0.

The second Chern class is given by

c2(E) = λ1λ2 + · · ·+ λn−1λn =
1

2

(

(
n
∑

i=1

λi)
2 −

n
∑

i=1

λ2i

)

.

Rewritten in another way, we obtain

c2(E) =
1

2

(

i

2π

)2

(TrF ∧ TrF − Tr(F ∧ F )) =
1

8π2
Tr(F ∧ F ).

We investigate the term Tr(F ∧ F ). First decompose F = F+ + F− into its selfdual and
antiselfdual projections. From (17), we know that the cross-terms vanish and by linearity of the
trace operator
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Tr(F ∧ F ) == Tr((F+ + F−) ∧ (F+ + F−)) = Tr(F+ ∧ F+) + Tr(F− ∧ F−).

Since ∗F+ = F+ and ∗F− = −F−, we have

Tr(F ∧ F ) = Tr(F+ ∧ ∗F+)− Tr(F− ∧ ∗F−).

By definition (14), we see

Tr(F ∧ F ) = −F+ · F+ + F− · F− = −|F+|2 + |F−|2.

Integrating the second Chern class over M , we obtain an invariant depending only on the
vector bundle E →M .

∫

M

c2(E) =
−1

8π2

∫

M

(|F+|2 − |F−|2) ∗ (1). (18)

Looking back at the Yang-Mills functional, by orthogonality we see

YM(D) =

∫

M

|FD|
2 ∗ (1) =

∫

M

(|F+
D |2 + |F−

D |2) ∗ (1).

Hence we are minimizing
∫

M
|F+|2 +

∫

M
|F−|2 subject to the constraint const =

∫

M
|F+|2 −

∫

M
|F−|2. The solution is that we must have either F+ = 0 or F− = 0. In other words, F must

be a selfdual soliton or an antiselfdual soliton, depending on the sign of
∫

M
c2(E). If c2(E) is

positive, we require F to be an antiselfdual soliton. This completes the proof that solving the
Yang-Mills equation on M is equivalent to finding selfdual or antiselfdual instantons.
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9. ASD Connections and Gauge Fixing

As in the previous section, we always assume that M is an orientable, compact Riemannian
manifold of dimension d = 4. In the previous section, we showed using Chern classes and the
variational formulation of the Yang-Mills equations that solving for Yang-Mills connections on
M is equivalent to solving for selfdual or antiselfdual connection on M , depending on the sign
of c2(E). If c2(E) is positive, we seek ASD (antiselfdual) connections. In this section, we will
briefly discuss the problem of solving the ASD equation over M . The theorems and proofs will
closely follow [4].

We first write out the equation explicitly. For F to be ASD, we require F+ = 0 in the
decomposition F = F+ + F−. If we write locally F = Fjk ⊗ dxj ∧ dxk, from the definitions of
f+
i and f−

i given in the previous section (defined above (17)), a short computation yields

F = Fjk ⊗ dxj ∧ dxk

=
1

2
(F12 + F34)⊗ f+

1 +
1

2
(F13 − F24)⊗ f+

2 +
1

2
(F14 + F23)⊗ f+

3

+
1

2
(F12 − F34)⊗ f−

1 +
1

2
(F13 + F24)⊗ f−

2 +
1

2
(F14 − F23)⊗ f−

3 .

Therefore, for F+ = 0, we require the coefficients in front of f+
1 , f

+
2 , f

+
2 to be zero. Hence the

ASD equations are

F12 + F34 = 0,

F13 − F24 = 0,

F14 + F23 = 0,

As it stands, the ASD equation is not elliptic. The problem is that the equation is invariant
under gauge transformations. The trivial solution, where the connection is determined by A = 0,
is gauge equivalent to the solution with A = g−1dg by (9). But the derivatives of A = g−1dg
cannot be controlled by the L2 norm. In order to obtain an elliptic equation, we need to spec-
ify an additional piece of information to remove the gauge invariance. This is called gauge fixing.

To illustrate the situation, we revisit the case n = 2. As discussed in the chapter on Hodge
theory, since o(2) is commutative, the Yang-Mills equation is linear in this case. By (3), since
the commutators vanish, we obtain

F = (∂jAk − ∂kAj)⊗ dxj ∧ dxk = ∂jAk ⊗ dxj ∧ dxk + ∂kAj ⊗ dxk ∧ dxj.
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Therefore,

F = 2dAi ⊗ dxi.

Since A = Ai ⊗ dxi, we have

F = 2dA.

The gauge group O(2) also acts on A in a nice way in the linear case. Write g ∈ O(2) as the
exponential of a member of its Lie algebra: g = eX for X ∈ o(2). Since everything commutes,
the action of g on A according to (9) is given by

g · A = A+ dX.

Now, as shown in (13), the Yang-Mills equation in the n = 2 case is given by d∗F = 0. In
terms of A, then Yang-Mills equation reads

d∗dA = 0.

To make this elliptic, we add the following gauge condition:

d∗A = 0.

Combining these two equations, we obtain the elliptic equation

∆A = (d∗d+ dd∗)A = 0.

We will generalize this procedure to the nonlinear case. To indicate the dependence on A, we
will sometimes denote a connection d+A by DA. We will denote the gauge group by G, which
in our case will be the unitary group. Denote the gauge equivalence class of a connection DA

by

H = {g ·A : g ∈ G}.

Given a connection DA0
, we say that B ∈ H is in the Coulomb gauge relative to A0 if

D∗
A0
(B − A0) = 0.

We see that if A0 = 0, then in the linear case this reduces to d∗B = 0, which is the condition



38

discussed above.

Theorem 9.1. There exists a constant C(A) depending on A such that if B is another connec-

tion on E and a = B −A satisfies

||DADAa||
2
L2 + ||a||2L2 < C(A),

then there exists g ∈ G such that g · B is in the Coulomb gauge relative to A.

Before proving this theorem, we will state some theorems from partial differential equations
that will be used in the proof. For σ ∈ Γ(E), and D a metric connection, and k a positive
integer, we have the Sobolev norm

||σ||2Hk,2 =

k
∑

i=0

∫

M

|D(i)σ|2.

If we take the completion of the space of smooth sections Γ(E) with respect to the Hk,2 norm,
we obtain the Banach space denoted by Hk,2. This space is equivalent to the one defined using
the regular definition from analysis in local coordinates and bundle trivializations. Therefore, we
can use standard theorems from Sobolev space theory. We will need the following two theorems:

Theorem 9.2. (Implicit Function Theorem) Let E be a product of Banach spaces E1, E2

and f be a smooth map. If the partial derivative (D2f) at a point (ξ1, ξ2) is surjective and has

a bounded right inverse, then for all η1 close to ξ1 there is a solution η2 such that f(η1, η2) =
f(ξ1, ξ2).

Theorem 9.3. (Fredholm Alternative) Let E1, E2 be vector bundles with metrics over a

compact manifold M . Let L : Γ(E1) → Γ(E2) be an elliptic operator. Then the formal adjoint

L∗ is also elliptic and a section σ of E2 is in the image of L if and only if the L2 inner product

(σ, µ) is zero for all µ in the kernel of L∗.

We now prove Theorem 9.1.

Proof. First, we compute using (5):

(g ·DA)σ = g−1DA(gσ) = Dσ − (D(g−1gσ)− g−1D(gσ)) = Dσ − (DAg
−1)gσ.

Hence

g · A = A− (DAg
−1)g.
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Next, since DA+a = DA + a, we compute

g · (A+ a)σ = (A+ a)σ − (DA+ag
−1)gσ

= (A+ a)σ −DA+a(σ) + g−1DA+a(gσ)

= (A+ a)σ −DAσ − aσ + g−1a(gσ) + g−1DA(gσ)

= Aσ + g−1a(gσ)− (DAg
−1)(gσ).

Hence

g · (A+ a) = A + g−1ag − (DAg
−1)g.

We are looking for a g ∈ G such that 0 = D∗
A(g · B − A). By the above computations, the

equation that we need to solve is

D∗
A(g

−1ag − (DAg
−1)g) = 0.

Let g = e−X , where X ∈ Γ(End(E)) whose fiber endomorphisms are in the Lie algebra of G,
and define

F (X, a) = D∗
A((DAe

X)e−X − eXae−X).

We want to use Sobolev spaces, so we extend the domain of F to allow X ∈ H3,2 and a ∈ H2,2.
We see that ImF ⊂ ImD∗

A where the closure is taken with respect to H1,2. The total derivative
of F at (0, 0) is given by

DF (ξ, b) = D∗
ADAξ −D∗

Ab.

To apply the implicit function theorem, we need to show that the map ξ 7→ D∗
ADAξ is onto

ImD∗
A. We can then obtain a small solution X to the equation F (X, a) = 0.

Showing surjectivity will be done via the Fredholm alternative. Since DAD
∗
A is elliptic, the

equation D∗
ADAξ = η has a solution if and only if η is L2 orthogonal to the kernel of D∗

ADA. If
D∗

ADAσ = 0, then

(DAσ,DAσ) = (σ,D∗
ADAσ) = 0.

Hence DAσ = 0. Therefore (D∗
Aµ, σ) = (µ,DAσ) = 0, and ImD∗

A is L2 orthogonal to the
kernel of D∗

ADA. Since ||DADAa||
2
L2 + ||a||2L2 is an admissible norm on H2,2, if C(A) is small
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enough, the implicit value theorem provides a solution g = e−X .

However, X ∈ H3,2, and we are looking for a smooth g = e−X . By a bootstrap argument, we
can show that g is indeed smooth. Using that D∗

A(gag
−1 − (DAg)g

−1) = 0, one can compute

D∗
ADAg = (DAgg

−1, DAg) + gD∗
Aag

−1 + (DAg, a) + (ga, g−1DAg),

where (, ) denotes the contraction on the one-form components. If g is continuous and g ∈ Hn,2,
then the right hand side is in Hn−1,2. By elliptic regularity, since D∗

ADA is of order 2, we have
g ∈ Hn+1,2. By the Sobolev embedding theorem, g is smooth.

�

We conclude this section by stating some theorems of Uhlenbeck without proof. The proofs
are long and involved; they can be found in [4]. The first theorem states that for small curva-
ture, the Coulomb gauge condition can be uniquely satisfied provided boundary conditions.

Theorem 9.4. There are constants ε1,M > 0 such that any connection defined by A on the

trivial bundle over the closed unit ball B
4
with ||FA||L2 < ε1 is gauge equivalent to a connection

defined by Ã over B
4
such that

d∗Ã = 0,

lim
|x|→1

Ãr = 0,

||Ã||H1,2 ≤M ||FÃ||L2 .

Here Ar denotes the radial component
∑

(xi/r)Ai of the connection matrix, defined on B4\{0}.

For suitable constants ε1,M , the connection Ã is uniquely determined by these properties,

up to the transformation Ã→ g0 · Ã for a constant g0 ∈ G.

The next theorem states that for small curvature, the ASD equations in the Coulomb gauge
has the nice property that the L2 norm of the curvature controls the Sobolev norms of the
connection.

Theorem 9.5. There is a constant ε2 > 0 such that if Ã is any ASD connection on the trivial

bundle over B4 which satisfies the Coulomb gauge condition d∗Ã = 0 and ||Ã||L4 ≤ ε2, then for

any interior domain D whose closure is compact and inside B4 and any l ≥ 1, we have

||Ã||Hl,2(D) ≤Ml,D||FA||L2(B4),
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for a constant Ml,D depending only on l and D.

We have only scratched the surface of the mathematics involved in studying instantons on a
4-manifold. The study of the Yang-Mills equations on 4-manifolds has lead to deep insight on
the classification of differentiable 4-manifolds, and instantons turn out to be a powerful tool. A
detailed account can be found in [4].
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