
















DIFFERENTIAL EQUATIONS

1. (a) Write down the definition of the Fourier transform and its inverse. Applying this to
an odd function derive the formulae for the Fourier sine transform and its inverse.

(b) Solve the following initial boundary value problem (in which k is a positive constant):

8
>>>>>>>><

>>>>>>>>:

@u

@x
(x, t) = k

@2u

@x2
(x, t), for x ∏ 0, t ∏ 0;

u(0, t) = h(t), for t ∏ 0;
u(x, t) and u

x

(x, t)! 0 as x!1;
u(x, 0) = 0, for x ∏ 0.

(Note:
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e°!
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2. Let T (x, t) denote the ground temperature at depth x below the surface, at time t.
Suppose that the surface temperature varies with time in the form:

T (0, t) = T0 + A0 · cos !t (t > 0) (1)

where T0 is the average temperature, A0 is the amplitude of temperature fluctuation,
and ! is the frequency (T0, A0,! are known). Suppose that the temperature distribution
underground is subject to the heat conduction equation:

@T

@t
= ∑

T

@2T

@X2
(2)

and that, as x!1
T ! T1 (3)

where T1 is a constant to be determined.

Find

(a) the underground temperature distribution T (x, t),

(b) T1, the temperature in the deep underground,

(c) the depth x§, where the temperature fluctuation is reduced to 1% .
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3. Consider an infinite non-homogeneous string, which is composed of two different materials
joined at x = 0. The displacements u1 and u2 of the string segments are subject to the
wave equations: √

@2

@t2
° c2

1

@2

@x2

!

u1(x, t) = 0, x < 0
√

@2

@t2
° c2

2

@2

@x2

!

u2(x, t) = 0, x > 0

Suppose that starting from t = 0, there is an incoming right running wave

u1(x, t) =

8
<

:
Φ

µ
t° x

c1

∂
x < c1t

0 x > c1t

This incoming wave will be reflected at x = 0 and also transmitted into the region (x > 0).
Determine

(a) the transmission wave and the reflection wave,

(b) the transmission rate T and reflection rate R of the wave energy, supposing that the
wave energy is measured by its magnitude.
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Part A- Beta Examination  August 2007 

Applied PDE Module 
Problem 1) Consider the problem 

- \l·[a(x) \1 u(x)] = I(x) for x EO, 
1/ • \lu(x) = g(x) for x E 

where 0 is a bounded domain with smooth boundary, 1/ is the normal to the 
boundary and a(x) is a positive differentiable function on the closure of O. 

(a) State a necessary condition for this problem to have a solution. 
(b) Assuming (a), prove that the above problem has at most one .solution 

in 0 2 (0). 
(c)  Use the divergence theorem to motivate and then carefully specify the 

weak formulation of this problem. 
(d) Assuming the condition in (a),  briefly outline the proof of the existence 

of weak solutions. 

Problem 2) (a) Derive formulae for the solutions u(x, t) and vex, t) of the system 

8t u',+ 38xv - 0, 
b· t t u(x,O) = uO(x), 

su  Jec 0 (0) _ O()8t v + 38x u = 0,  
. 
v x, , - v x. 

(b) Evaluate the solutions at (x, t) = (1,1) and (x, t) = (2,0.5) in the case 
that 

°( ) =. {O for x < 0 d' °( ) = {2 for x < 1 u  x. 2. for x 2: 0 ' an v x. 4 for x 2: 1 . 

(c)  Note that the solutions are identically constant over certain regions in 
the (x, t)-plane. Sketch these regions. Verify that the Rankine Hugo-
niot condition holds across the boundary between the regions containing 
(x, t) = (1,1) and (x, t) = (2,0.5). 
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Part A- Beta Examination August 2007 

Problem 3) The forced vibration of an infinitely long uniform beam is described by 

tru 1 cPu 1 
ox4 + c2 &t2 = EJP(x, t), 

where u(x, t) is the lateral deflection of the beam, and c, E, &1 are constants. 
The forcing P(x, t) is localized and impulsive, ie, 

P(x, t) o(x)o(t) 

where 0 denotes the Dirac measure.  
Use Fourier transforms to find u(x, t), given that u(x, 0) = O. Evaluate all the  
integrals, and interpret the results physically. .  

. You may use the identity 

(exp(-ea-iEx)dE= 
v 21f ilR v2a 

where a can be complex. 

Problem 4) Consider a solid sphere n c JR.3 of radius a, centered at the origin. Let the 
. sphere have constant mass density f.J,'. By Newton's law, the gravitational force 

Pexerted by this sphere on a unit mass at point'E is given by 

f f.J,(x-E) 
F(E) = Cin Ix- EI3 dx. 

Associated with this force is a gravitational potential u, which is harmonic 
outside n, vanishes at infinity, is Cl(JR.3), and satisfies 

!:::.u = "V . P in n. 
(a) Evaluate the gravitational potential, which is· defined by 

u(E) := cLa Ix dx. 

(b) Evaluate the force P, by first showing that P= "Vu. 
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Part A- Beta Examination May 2009

Partial Differential Equations

1. Find the solution u = u(x, t) of

2xtu
x

+ u
t

= u, u(x, 0) = f(x)

where f 2 C1
(°1,1) and prove that when f(0) = 0 one has lim

t!1u(x, t) = 0.

2. Assume the fact that on R3
¢

1

r
= °4º± in the distribution sense where

r = (x2
1 + x2

2 + x2
3)
°1/2. Now consider the operator Lu = a2

1@
2
1u + a2

2@
2
2u + a2

3@
2
3u and

the function E(x1, x2, x3) = (x2
1/a

2
1 + x2

2/a
2
2 + x2

3/a
2
3)
°1/2 where a1, a2 and a3 are positive

constants and @
i

denotes partial differentiation wrt x
i

. Prove that

LE = °4ºa1a2a3±

in the distribution sense.

3. Suppose ≠ Ω Rn is a bounded domain with smooth boundary. Prove that there is a constant
C > 0 depending only on ≠ such that

kuk
L

2(≠) ∑ Ckruk
L

2(≠),8u 2 H1
0 (≠).

4. Let {u
k

(x, t)} be a monotone sequence of solutions of heat equation u
t

° ¢

x

u = 0 in
Rn £ (0,1). Suppose there is a point (x0, t0) 2 Rn £ (0,1) such that {u

k

(x0, t0)}1
k=1 is

bounded. Prove that for any compact subset K Ω Rn, any T ∏ 0, the sequence {u
k

(x, t)}1
k=1

is uniformly convergent in K£ [t0, t0 +T ], and the limit function satisfies the heat equation.
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Part A - Beta Examination August 2010

Partial Differential Equations

1. Show that the distribution T
N

defined by

< T
N

, � >=

Z

Rn

N� dx, � 2 C1
c

(Rn

),

where

N(x) =

|x|2�n

(2� n)!
n

, !
n

=

2⇡n/2

�(n/2)

,

is for n � 3 a fundamental solution of the Laplacian � in Rn, that is

�T
N

= �,

where � denotes the Dirac measure in Rn. Hint: You may use without proof the following
lemma: If f 2 L1

(Rn

) and g 2 Lp

(Rn

), then f ⇤ g
✏

! af in the Lp norm, where

a =

Z

Rn

g dx, g
✏

(x) = ✏�ng(x/✏).

2. Suppose that u(x, t) is C2 for 0  t  T, x 2 Rn, and that u solves the wave equation

@2
t

u��u = 0.

Suppose furthermore that u = 0 = @
t

u on the ball

B = {(x, 0) | |x� x0|  t0},

contained in the hyperplane t = 0, where x0 2 Rn and 0  t0  T . Show that u vanishes
identically in the backward solid cone

⌦ = {(x, t) | 0  t  t0, |x� x0|  t0 � t}.

Hint: Calculate the time derivative dE

dt

of the ”energy”

E(t) =

1

2

Z

Bt

[(@
t

u)

2
+ |r

x

u|2]dx

where
B

t

= {x | |x� x0|  t0 � t},
and show that

dE

dt
 0,

using the divergence theorem. Impose then the Cauchy data.
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Part A - Beta Examination August 2010

3. The governing equations for the one-dimensional, isentropic flow of a compressible gas are

c
t

+ u c
x

+

� � 1

2

c u
x

= 0

u
t

+ u u
x

+

2

� � 1

c c
x

= 0 ,

where c, u, and � are, respectively, the sound speed, the velocity in the x direction and the
ratio of specific heats (a constant).
Try to find a solution of this system using the method of characteristics. You may use any
procedure with which you are comfortable, but one approach is the following. Form a linear
combination of the two PDEs by multiplying the second one by � and adding it to the first.
Then, choose � such that in the combined equation both c and u are differentiated in the
same direction (i.e., dx/dt is the same for c as it is for u).
For each real value of �, determine the ODE that applies along the characteristics. Finally,
obtain integrals (“Riemann invariants”) that are constant along each characteristic. Use two
or three adjectives to classify the above system.

4. Find a similarity solution of the following PDE using the procedure outlined in (a) and (b)
below:

A
t

= A
xx

+ A, �1 < x <1, t > 0 .

(a) Noting the resemblance of the above equation to the heat equation, make the change of
independent variables (t, x)! (t, ⌘), where ⌘ = x2/4t.

(b) Taking advantage of its linearity, solve the resulting PDE by employing the separation of
variables

A(t, ⌘) = f(t)e�⌘.

(c) Employ a Fourier transform to solve the same problem and take as initial condition
A(x, 0) = f(x). For what choice of f(x) will you recover the answer obtained in part (b)?
(See next page for Fourier transform table.)
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Partial Di↵erential Equations Module

[PDE. 1]
(a) Using the method of characteristics, solve

u
t

+ (u
x

)2 = 0, u(x, 0) = x2.

(b) Find the entropy solution to Burgers’ equation u
t

+ uu
x

= 0 with initial condition

u(x, 0) =

8
>>><

>>>:

1 if x < �1
1/2 if � 1 < x < 1
3/2 if 1 < x < 2
1 if x > 2.

[PDE. 2]
(a) Write down the Fundamental Solution �(·) to �4 on R3

and write down the PDE it solves in the sense
of distributions.

(b) If ⌦ ⇢ R3 is a bounded open set with smooth boundary, define the usual Green’s function (for ho-
mogeneous Dirichlet boundary conditions) for �4 on ⌦ in terms of � and a corrector function. For
f 2 C2

c

(⌦), write the solution to

�4u = f in ⌦ u = 0 on @⌦

in terms of the Green’s function.
(c) For the rest of this question, we let the dimension n = 1. Find the Fundamental Solution �(·) of � 1D

Laplacian on R (i.e. � d2

dx2
). Prove that if f 2 C2

c

(R), then the solution to

�d2u(x)
dx2

= f(x), x 2 (�1,1),

is given by

u(x) =
Z 1

�1
�(x� y) f(y)dy.

(d) Find the Green’s function for � d2

dx2
on (�1, 1) with Dirichlet boundary conditions (i.e. associated with

boundary conditions u(�1) = u(1) = 0).

(e) Does there exist a Green’s function (often referred to as a Neumann function) for � d2

dx2
on (�1, 1) with

Neumann boundary conditions?
[PDE. 3]

Let ⌦ be a bounded. connected open set in R3 with smooth boundary @⌦ which is the union of two nonempty
disjoint surfaces, say @⌦ = �0 [ �1. Suppose f 2 L2(⌦).

(a) Consider the BVP 8
>><

>>:

�4u = f in ⌦,

@u

@n
= 0 on �1,

u = 0 on �2.

Write down a weak formulation of this BVP and explain why it is the weak formulation.
Hint: The Hilbert space to work in is

H =
⇢

u 2 H1(⌦)
���� u = 0 in the sense of trace on �0

�
.

Note that the Neumann condition is absent from the space but it will (naturally!) come in by noting
that H1

0 (⌦) ⇢ H, so if a statement holds for all v 2 H, it certainly holds for all v 2 H1
0 (⌦).

(b) Prove that for all f 2 L2(⌦), there is a weak solution u 2 H. You may assume that the usual Poincaré
inequality holds on H (it does).



6

[PDE. 4]
Let ⌦ be a bounded, connected open set in Rn with smooth boundary. Let X denote the closed subspace of

H1(⌦) that does NOT contain nonzero constant functions. Using the compactness of the embedding of H1(⌦)
into L2(⌦), prove that there exists a constant C <1 (independent of u) such that for u 2 X,

Z

⌦
|u|2dx  C

Z

⌦
|Du|2dx.
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Partial Di↵erential Equations Module

[PDE. 1]

(a) Using the method of characteristics, solve

xux + 2yuy + uz = 3u, u(x, y, 0) = g(x, y).

(b) Consider the Burgers equation ut + uux = 0 with initial data

u(x, 0) = 0 if |x| � 1 and u(x, 0) = 1� |x| if |x|  1.

By sketching the characteristics, describe the entropy solution, i.e. the solution with the property that
at its discontinuities (shocks), the entropy inequality is satisfied. Clearly indicate on your sketch of
the characteristics where the shock is. Is the shock a line? What is the equation of the shock? What
happens to u(·, t) as t ! 1?

[PDE. 2]
Define the Green’s function G(x, y) for the Dirichlet problem involving �4 in three space dimensions and a

region ⌦. What can you say about the sign of G i.e. is it always positive, always negative, the answer depends
on the source point, just can’t say? Prove your answer.

[PDE. 3]
Let ⌦ be a connected subset of Rn with smooth boundary.

(a) Give a definition for a weak solution u 2 H1(⌦) of the Neumann problem

�4u = f in ⌦,
@u

@⌫
= 0 on @⌦.

Clearly motivate why this is a natural definition.
(b) Prove that there is a weak solution to this problem i↵

Z

⌦
fdx = 0.

[PDE. 4]
Let ⌦ be a bounded domain in Rn with smooth boundary.

(a) For f 2 L2(⌦), show that there exists a uf 2 H1
0 (⌦) such that

(f, uf )L2(⌦) = kufk2H1
0 (⌦).

Hint: For v 2 H1
0 (⌦) define the functional

Tf (v) := (f, v)L2(⌦) =

Z

⌦
f(x)v(x)dx.

Show that Tf is a bounded linear functional and apply the Riesz representation theorem.
(b) The H�1 norm of f is given by

kfk2H�1(⌦) := kufk2H1
0 (⌦).

Of course this norm applies to a wider class of distributions which include L2, but using just the
restriction to L2, prove that L2(⌦) is compactly embedded in H�1(⌦). You may use the fact that
H1

0 (⌦) is compactly embedded in L2(⌦).


