MATH 581 ASSIGNMENT 4

DUE FRIDAY MARCH 2

- 1. Let $\omega \subset \mathbb{R}$ be an open interval, and $u \in \mathscr{D}'(\omega)$. Let $0 \leq k \leq \infty$.
 - a) Show that if u' = 0 then u is a constant function.
 - b) Show that if u' = f with $f \in C^k(\omega)$, then $u \in C^{k+1}(\omega)$.
 - c) Show that if u' + au = f with $a \in C^{\infty}(\omega)$ and $f \in C^{k}(\omega)$, then $u \in C^{k+1}(\omega)$.
 - d) Extend the above result to *n*-th order linear ODE's with smooth coefficients, assuming that the leading order coefficient does not vanish on ω . This would prove in particular hypoellipticity of linear ordinary differential operators with smooth coefficients (provided the leading order coefficient is nowhere zero). One can also prove analytic-hypoellipticity of such operators with analytic coefficients.
- 2. A distribution u is called *nonnegative* if $u(\varphi)$ is nonnegative for every nonnegative test function φ . Show that a distribution is nonnegative if and only if it is a nonnegative Radon measure. Note that this means any Jordan-type decomposition would fail for distributions: Radon measures are the only distributions which can be written as the difference of two nonnegative distributions.
- 3. Let us define the Fourier transform by

$$\hat{u}(\xi) = \alpha \int e^{i\beta x \cdot \xi} u(x) \mathrm{d}x,$$

for $u \in \mathscr{S}(\mathbb{R}^n)$, where $\alpha, \beta \in \mathbb{R}$ are constants. Derive a formula for the inverse transformation. List some common and/or convenient choices for the constants α and β . For $u, v \in \mathscr{S}$, prove (or derive a formula for) the followings.

- a) Parseval's formula: $\int u\bar{v} = \gamma \int \hat{u}\bar{\hat{v}}$, where $\gamma = \gamma(\alpha, \beta)$ is a constant.
- b) $\widehat{u * v} = \hat{u}\hat{v}$.
- c) $\widehat{uv} = \gamma \hat{u} * \hat{v}$.

d) Derive a formula for $\hat{u} \circ \hat{A}$, where A is an $n \times n$ invertible matrix.

- 4. There are (at least) two ways to define the Fourier transform on $L^2(\mathbb{R}^n)$.
 - Extend the Fourier transform from \mathscr{S} to L^2 by using the density of \mathscr{S} in L^2 (as well as the Plancherel bound).

• First define the Fourier transform on \mathscr{S}' by duality, and then restrict it to L^2 . Show that these two approaches are consistent with each other.

- 5. Give an example of $u \in C(\mathbb{R}^n)$ such that $\varphi \mapsto \int u\varphi$ is a tempered distribution and that there is no polynomial p satisfying $|u(x)| \leq |p(x)|$ for all $x \in \mathbb{R}^n$.
- 6. For each of the following functions, determine if it is a tempered distribution, and if so compute its Fourier transform.

Date: Winter 2012.

DUE FRIDAY MARCH 2

a) $\sin x$, b) $e^{i|x|^2}$, c) The Heaviside step function, d) The sign function, e) $|x|^s$, where s is a real number.

7. a) Let $a \in \mathscr{E}(\mathbb{R}^n)$. Prove that the pointwise multiplication $u \mapsto au : \mathscr{S}' \to \mathscr{S}'$ is well-defined and continuous if and only if for every multi-index α there is a polynomial p such that $|\partial^{\alpha} a(x)| \leq p(x), x \in \mathbb{R}^n$.

b) Let p be a polynomial satisfying $|p(i\xi)| \ge c(1+|\xi|)^m$ for all $\xi \in \mathbb{R}^n$, with some constants c > 0 and m. Operators $p(\partial)$ with p satisfying this condition are called *strictly elliptic*. Show that the equation $p(\partial)u = f$ has a solution for each $f \in \mathscr{S}'$.